首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular insights of Hippo signaling in the chick developing lung
Institution:1. Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;2. ICVS/3B''s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal;3. Anatomic Pathology Department, Unidade Local de Saúde de Matosinhos, 4450-113 Matosinhos, Portugal;4. Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
Abstract:Hippo signaling pathway and its effector YAP have been recognized as an essential growth regulator during embryonic development. Hippo has been studied in different contexts; nevertheless, its role during chick lung branching morphogenesis remains unknown. Therefore, this work aims to determine Hippo role during early pulmonary organogenesis in the avian animal model. The current study describes the spatial distribution of Hippo signaling members in the embryonic chick lung by in situ hybridization. Overall, their expression is comparable to their mammalian counterparts. Moreover, the expression levels of phosphorylated-YAP (pYAP) and total YAP revealed that Hippo signaling is active in the embryonic chick lung. Furthermore, the presence of pYAP in the cytoplasm demonstrated that the Hippo machinery distribution is maintained in this tissue. In vitro studies were performed to assess the role of the Hippo signaling pathway in lung branching. Lung explants treated with a YAP/TEAD complex inhibitor (verteporfin) displayed a significant reduction in lung size and branching and decreased expression of ctgf (Hippo target gene) compared to the control. This approach also revealed that Hippo seems to modulate the expression of key molecular players involved in lung branching morphogenesis (sox2, sox9, axin2, and gli1). Conversely, when treated with dobutamine, an upstream regulator that promotes YAP phosphorylation, explant morphology was not severely affected. Overall, our data indicate that Hippo machinery is present and active in the early stages of avian pulmonary branching and that YAP is likely involved in the regulation of lung growth.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号