首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Paradoxical Interventricular Septal Motion as a Major Determinant of Late Gadolinium Enhancement in Ventricular Insertion Points in Pulmonary Hypertension
Authors:Takahiro Sato  Ichizo Tsujino  Hiroshi Ohira  Noriko Oyama-Manabe  Yoichi M Ito  Teruo Noguchi  Asuka Yamada  Daisuke Ikeda  Taku Watanabe  Masaharu Nishimura
Abstract:

Background

This study investigated the major clinical determinants of late gadolinium enhancement (LGE) at ventricular insertion points (VIPs) commonly seen in patients with pulmonary hypertension (PH).

Methods

Forty-six consecutive PH patients (mean pulmonary artery pressure ≥25 mmHg at rest) and 21 matched controls were examined. Right ventricular (RV) morphology, function and LGE mass volume at VIPs were assessed by cardiac magnetic resonance (CMR). Radial motion of the left ventricular (LV) wall and interventricular septum (IVS) was assessed by speckle-tracking echocardiography. Paradoxical IVS motion index was then calculated. Univariate and multivariate regression analysis were conducted to characterize the relationship between LGE volume at VIPs and PH-related clinical indices, including the paradoxical IVS motion index.

Results

Mean pulmonary arterial pressure (MPAP) of PH patients was 38±9 mmHg. LGE at VIPs was observed in 42 of 46 PH patients, and the LGE volume was 2.02 mL (0.47–2.99 mL). Significant correlations with LGE volume at VIPs were observed for MPAP (r = 0.50) and CMR-derived parameters RV mass index (r = 0.53), RV end-diastolic volume index (r = 0.53), RV ejection fraction (r = −0.56), and paradoxical IVS motion index (r = 0.77)]. In multiple regression analysis, paradoxical IVS motion index alone significantly predicted LGE volume at VIPs (p<0.001).

Conclusions

LGE at VIPs seen in patients with PH appears to reflect altered IVS motion rather than elevated RV pressure or remodeling. Long-term studies would be of benefit to characterize the clinical relevance of LGE at VIPs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号