首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae
Authors:Haobo Jiang  Siwei Liu  Picheng Zhao  Carey Pope
Institution:aDepartment of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;bDepartment of Physiological Sciences at Oklahoma State University, Stillwater. OK 74078, USA
Abstract:Acetylcholinesterases (AChEs) and their genes from susceptible and resistant insects have been extensively studied to understand the molecular basis of target site insensitivity. Due to the existence of other resistance mechanisms, however, it can be problematic to correlate directly a mutation with the resistant phenotype. An alternative approach involves recombinant expression and characterization of highly purified wild-type and mutant AChEs, which serves as a reliable platform for studying structure–function relationships. We expressed the catalytic domain of Anopheles gambiae AChE1 (r-AgAChE1) using the baculovirus system and purified it 2,500-fold from the conditioned medium to near homogeneity. While KM's of r-AgAChE1 were comparable for ATC, AβMTC, PTC, and BTC, Vmax's were substantially different. The IC50's for eserine, carbaryl, paraoxon, BW284C51, malaoxon, and ethopropazine were 8.3, 72.5, 83.6, 199, 328, and 6.59 × 104 nM, respectively. We determined kinetic constants for inhibition of r-AgAChE1 by four of these compounds. The enzyme bound eserine or paraoxon stronger than carbaryl or malaoxon. Because the covalent modification of r-AgAChE1 by eserine occurred faster than that by the other compounds, eserine is more potent than paraoxon, carbaryl, and malaoxon. Furthermore, we found that choline inhibited r-AgAChE1, a phenomenon related to the enzyme activity decrease at high concentrations of acetylcholine.
Keywords:Insecticide resistance  Mosquito  Malaria  Organophosphate  Carbamate  Cholinergic synapse
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号