首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis
Authors:Soltani Bahram M  Ehlting Jürgen  Douglas Carl J
Institution:Genetics Graduate Program, University of British Columbia, Vancouver, BC, Canada.
Abstract:4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号