首页 | 本学科首页   官方微博 | 高级检索  
   检索      


UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons
Authors:Xian-Guang Lin  Min Ming  Mao-Rong Chen  Wei-Pin Niu  Bei Liu  Jun-Wei Yu  Zheng-Xing Wu
Institution:a Key Laboratory of Molecular Biophysics, Ministry of Education, and Institute of Biophysics & Biochemistry, Huazhong University of Science & Technology, 430074 Wuhan, People’s Republic of China
b National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People’s Republic of China
Abstract:UNC-31 or its mammalian homologue, Ca2+-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca2+-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca2+ level (pre-flash Ca2+ was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca2+ evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex.
Keywords:Exocytosis  UNC-31/CAPS  C  elegans  Docking and priming  Membrane capacitance (Cm)  Total Internal reflection fluorescence microscopy (TIRFM)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号