首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical analysis of binary data generated from multilocus dominant DNA markers
Authors:Khang T F  Yap V B
Affiliation:Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546.
Abstract:
The use of methodologies such as RAPD and AFLP for studying genetic variation in natural populations is widespread in the ecology community. Because data generated using these methods exhibit dominance, their statistical treatment is less straightforward. Several estimators have been proposed for estimating population genetic parameters, assuming simple random sampling and the Hardy-Weinberg (HW) law. The merits of these estimators remain unclear because no comparative studies of their theoretical properties have been carried out. Furthermore, ascertainment bias has not been explicitly modelled. Here, we present a comparison of a set of candidate estimators of null allele frequency (q), locus-specific heterozygosity (h) and average heterozygosity () in terms of their bias, standard error, and root mean square error (RMSE). For estimating q and h, we show that none of the estimators considered has the least RMSE over the parameter space. Our proposed zero-correction procedure, however, generally leads to estimators with improved RMSE. Assuming a beta model for the distribution of null homozygote proportions, we show how correction for ascertainment bias can be carried out using a linear transform of the sample average of h and the truncated beta-binomial likelihood. Simulation results indicate that the maximum likelihood and empirical Bayes estimator of have negligible bias and similar RMSE. Ascertainment bias in estimators of is most pronounced when the beta distribution is J-shaped and negligible when the latter is inverse J-shaped. The validity of the current findings depends importantly on the HW assumption-a point that we illustrate using data from two published studies.
Keywords:ascertainment bias  binary data  dominant markers  empirical Bayes  root mean square error
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号