首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit
Abstract:Abstract

Oxidative stress (OS) is involved in the progression of intracerebral haemorrhage (ICH)-induced secondary brain injury. The pathway involving Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is currently recognised as the major endogenous regulatory system against oxidative injury. Although its beneficial role has been described for ICH, the time course of Keap1-Nrf2 pathway expression, the activity of downstream antioxidative enzymes, and the association with brain oedema and neurological deficits have not been fully investigated. In this study, we investigated the temporal changes in expression of Keap1, Nrf2, and their downstream antioxidative proteins in the ICH rat brain. We additionally quantified the relationship between these gene and protein changes with brain water content and neurological behaviour scores. After blood infusion, Keap1 showed decreased expression starting at 8 h, whereas Nrf2 began to show a significant increase at 2 h with a peak at 24 h. Keap1 and Nrf2 are chiefly expressed in neuronal cells but not in glial cells. The downstream antioxidative enzymes such as haemeoxygenase-1 (HO-1), glutathione (GSH), thioredoxin (TRX), and glutathione-S-transferase (GST-α1) increased to different degrees during the early stages of ICH. Among these enzymes, HO-1 showed a significant time-dependent increase starting 8 h after ICH. In addition, there was a positive correlation between the HO-1 level and brain water content. In combination, these results suggest that activation of the Keap1-Nrf2 pathway may play an important endogenous neuroprotective role during OS after ICH. Because HO-1 expression is temporally associated with brain oedema – reflective of the severity of brain injury – it may be used as a biomarker of haeme-mediated oxidative damage after ICH.
Keywords:intracerebral haemorrhage  oxidative stress  Kelch-like ECH-associated protein 1  nuclear factor erythroid 2-related factor 2  haemeoxygenase-1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号