首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Similarity landscapes: A way to detect many structural and sequence motifs in both introns and exons
Authors:Michael Hultner  Douglas W Smith  Christopher Wills
Institution:(1) Department of Biology 0116 and Center for Molecular Genetics, University of California, 92093 San Diego, La Jolla, CA, USA;(2) Present address: Department of Anatomy S-1334, School of Medicine, University of California, 94143 San Francisco, CA, USA
Abstract:When investigators undertake searches of DNA databases, they normally discard large numbers of alignments that demonstrate very weak resemblances to each other, retaining only those that show statistically significant levels of resemblance. We show here that a great deal of information can be extracted from these weak alignments by examining them en masse. This is done by building three-dimensional similarity landscapes from the alignments, landscapes that reveal whether an unusual number of individually nonsignificant alignments tend to match up to a particular region of the query sequence being searched. The power of the search is increased by the use of libraries consisting entirely of introns or of exons. We show that (1) similarity landscapes with a variety of features can be generated from both intron and exon libraries, using introns or exons as query sequences; (2) the landscape features are real and not a statistical artifact; (3) well-known protein motifs used as query sequences can generate various landscape features; and (4) there is some evidence for resemblances between short regions of sequence carried by introns and exons. One possible interpretation of these results is that both introns and exons may have been built up during their evolution from short regions of sequence that as a result are now widely distributed throughout eukaryotic genomes. Such an interpretation would imply that these short regions have common ancestry. Alternatively, the wide sharing of short pieces of DNA may reflect regions with particular structural properties that have arisen through convergent evolution. The similarity-landscape approach can be used to detect such widespread structural motifs and sequence motifs in the genome that might be missed by less-global searches. It can also be used in conjunction with algorithms developed for detecting significant multiple alignments by isolating promising subsets of the databases that can be examined in more detail.Correspondence to: C. Wills
Keywords:FASTA  Similarities  Introns  Exons  Motifs  Leucine zipper  DNA binding regions  Distant resemblances
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号