首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of disruption of the mitochondrial electrochemical gradient on steroidogenesis and the Steroidogenic Acute Regulatory (StAR) proteinProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998.
Authors:Steven R. King   Zhiming Liu   Jaemog Soh   Sarah Eimerl   Joseph Orly  Douglas M. Stocco
Affiliation:

aDepartment of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

b Hormone Research Center and Department of Biology, College of Natural Sciences, Chonnam National University, Kwangju 500-757, South Korea

c Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract:The steroidogenic acute regulatory (StAR) protein, which mediates cholesterol delivery to the inner mitochondrial membrane and the P450scc enzyme, has been shown to require a mitochondrial electrochemical gradient for its activity in vitro. To characterize the role of this gradient in cholesterol transfer, investigations were conducted in whole cells, utilizing the protonophore carbonyl cyanide m-chlorophenylhydrazone (m-CCCP) and the potassium ionophore valinomycin. These reagents, respectively, dissipate the mitochondrial electrochemical gradient and inner mitochondrial membrane potential. Both MA-10 Leydig tumor cell steroidogenesis and mitochondrial import of StAR were inhibited by m-CCCP or valinomycin at concentrations which had only minimal effects on P450scc activity. m-CCCP also inhibited import and processing of both StAR and the truncated StAR mutants, N-19 and C-28, in transfected COS-1 cells. Steroidogenesis induced by StAR and N-47, an active N-terminally truncated StAR mutant, was reduced in transfected COS-1 cells when treated with m-CCCP. This study shows that StAR action requires a membrane potential, which may reflect a functional requirement for import of StAR into the mitochondria, or more likely, an unidentified factor which is sensitive to ionophore treatment. Furthermore, the ability of N-47 to stimulate steroidogenesis in nonsteroidogenic HepG2 liver tumor cells, suggests that the mechanism by which StAR acts may be common to many cell types.
Keywords:mitochondrion   steroidogenesis   regulator protein
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号