首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Immunoenzyme analysis of decomposition of herbicides by soil and wood-rot fungi
Authors:Koroleva O V  Stepanova E V  Landesman E O  Vasil'chenko L G  Khromonygina V V  Zherdev A V  Rabinovich M L
Institution:Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071 Russia. Koroleva@mx.inbi.ras.ru
Abstract:The effect of herbicide atrazine was studied on the growth and development of a number of soil and wood decay fungi: white-rot basidiomycetes (Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus), thermophilic micromycetes from self-heating grass composts (cellulolytic fungus Penicillium sp. 13 and noncellulolytic ones Humicola lanuginosa spp. 5 and 12), and mesophilic phenol oxidase-producing micromycete Mycelia sterilia INBI 2-26. Detection of atrazine in liquid fungal cultures was performed by using enzyme immunoassay technique. Both stimulation (Humicola lanuginosa 5) and suppression (Humicola lanuginosa 12 and Penicillium sp. 13) of fungal growth with atrazine were observed on solid agar media. Hyphomycete Mycelia sterilia INBI 2-26 was almost insensitive to the presence of atrazine. Neither of thermophilic strains was capable of atrazine consumption in three-week cultivation. In contrast with that, active laccase producers Cerrena maxima, Coriolopsis fulvocenerea, and Coriolus hirsutus consumed up to 50% atrazine in 5-day cultivation in the presence of the xenobiotic and at least 80-90% in 40 days. Mycelia sterilia INBI 2-26, which also forms extracellular laccase, also consumed up to 70% atrazine in 17 days. The degree of atrazine consumption depended on the term of its addition to the fungal culture medium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号