首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK)
Authors:Zhang Jun  Petit Chad M  King David S  Lee Andrew L
Institution:Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Abstract:Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.
Keywords:Allosteric Regulation  Biophysics  Nuclear Magnetic Resonance  Phosphorylation  Protein Dynamics  MAGUK  NMR Dynamics  PDZ3  PSD-95
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号