首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An inquiry into the selective protection of glycine during the radiolysis of glycine-alanine mixtures in aqueous solutions and its implications to the preservation of optically active amino acids in the early earth
Authors:Rafael Navarro-González  Mitsuhiko Akaboshi  Alfredo Romero  Cyril Ponnamperuma
Institution:1. Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, 04510, México, D.F., México
2. Research Reactor Institute, Kyoto University, 590, Kumatori, Osaka, Japan
3. Laboratory of Chemical Evolution, Department of Chemistry and Biochemistry, University of Maryland, 20742, College Park, MD, USA
Abstract:Akaboshi et al. (1990) has found an unexpected protection of the achiral amino acid, glycine, towards ionizing radiation at the expense of the selective destruction of the chiral amino acids, alanine and aspartic acid. The present work examines the mechanism of this protection for the case of alanine. We have developed a computer model for the radiolysis of glycine, alanine and glycine-alanine mixtures in aqueous solution. It is established that this protection is due in part to the reaction of the α-radical of glycine with alanine to regenerate a more stable α-radical, according to the following reaction, $$ \cdot CH(NH_3^ + )CO_2^ - + CH_3 CH(NH_3^ + )CO_2^ - \to CH_2 (NH_3^ + )CO_2^ - + CH_3 \dot C(NH_3^ + )CO_2^ -$$ The rate constant of this reaction was estimated to be ≤104M-1s-1. The implications for this selective protection of glycine are considered for a hypothetical case in which there would be an enrichment of about 10% ofL-alanine in the primitive ocean and taking the glycine/alanine ratios obtained in CH4-and CO2- dominated atmospheres using electric discharge experiments. It is predicted that alanine would be rapidly destroyed and radioracemized in spite of the fact that the concentration of alanine is equal or significantly lower than that of glycine. Assuming that chiral amino acids were a prerequisite for the origin of life, it can be deduced that life could have appeared in a relatively short period of time unless there was a constant supply of optical amino acids from extraterrestrial sources.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号