首页 | 本学科首页   官方微博 | 高级检索  
   检索      


6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes
Authors:Hao-Yun Zhang  Nai-Dong Wang  Ning Song  Hua-Min Xu  Li-Min Shi  Hong Jiang  Jun-Xia Xie
Institution:1. Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, China
2. Department of Histology and Embryology, Shandong Provincial Key Laboratory of Human Anatomy and Embryology, Weifang Medical University, Weifang, 261042, China
Abstract:It is well known that disrupted brain iron homeostasis was involved in Parkinson’s disease. We previously reported 6-hydroxydopamine (6-OHDA) could enhance iron influx and attenuate iron efflux process, thus promote iron accumulation in neurons. Astrocytes, the major glial cell type in the central nervous system, are largely responsible for iron distribution in the brain. However, how iron metabolism changes in astrocytes with 6-OHDA treatment are not fully elucidated. In the present study, we first observed that both iron influx and efflux were enhanced with 10 μM 6-OHDA treatment for 24 h in primary cultured astrocytes. In accordance with these iron traffic modulations, both mRNA and protein levels of iron importer divalent metal transporter 1 with iron responsive element (DMT1+IRE) and exporter ferroportin 1 (FPN1) were up-regulated in these cells. L-ferritin mRNA levels were increased. Iron regulatory protein 1 (IRP1) showed a dynamic regulation with 6-OHDA treatment, as indicated by a moderate up-regulation at 12 h, however, down-regulation at 24 h. We further demonstrated that 6-OHDA treatment could induce activation of nuclear factor-kappaB (NF-κB) p65. IκBα activation inhibitor BAY11-7082 fully blocked 6-OHDA induced NF-κB p65 phosphorylation and DMT1 + IRE up-regulation. These results suggest that 6-OHDA might promote iron transport rate in astrocytes by regulating iron transporters, IRP1 expression and NF-κB p65 activation, indicating a different response between neurons and astrocytes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号