首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts
Authors:Ninomiya Ryoko  Matsuoka Keisuke  Moroi Yoshikiyo
Institution:Chemistry and Physics of Condensed Matter, Graduate School of Sciences, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810-8560, Japan.
Abstract:Micellization of sodium chenodeoxycholate (NaCDC) was studied for the critical micelle concentration (CMC), the micelle aggregation number, and the degree of counterion binding to micelle at 288.2, 298.2, 308.2, and 318.2 K. They were compared with those of three other unconjugated bile salts; sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium ursodeoxycholate (NaUDC). The I(1)/I(3) ratio of pyrene fluorescence and the solubility dependence of solution pH were employed to determine the CMC values. As the results, a certain concentration range for the CMC and a stepwise molecular aggregation for micellization were found reasonable. Using a stepwise association model of the bile salt anions, the mean aggregation number (n) of NaCDC micelles was found to increase with the total anion concentration, while the n values decreased with increasing temperature; 9.1, 8.1, 7.4, and 6.3 at 288.2, 298.2, 308.2, and 318.2 K, respectively, at 50 mmol dm(-3). The results from four unconjugated bile salts indicate that the number, location, and orientation of hydroxyl groups in the steroid nucleus are quite important for growth of the micelles. Activity of the counterion (Na(+)) was determined by a sodium ion selective electrode in order to confirm the low counterion binding to micelles. The solubilized amount of cholesterol into the aqueous bile salt solutions increased in the order of NaUDC
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号