首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Arabidopsis ECERIFERUM2 Is a Component of the Fatty Acid Elongation Machinery Required for Fatty Acid Extension to Exceptional Lengths
Authors:Tegan M Haslam  Aurora Ma?as-Fernández  Lifang Zhao  Ljerka Kunst
Institution:Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
Abstract:Primary aerial surfaces of land plants are coated by a lipidic cuticle, which forms a barrier against transpirational water loss and protects the plant from diverse stresses. Four enzymes of a fatty acid elongase complex are required for the synthesis of very-long-chain fatty acid (VLCFA) precursors of cuticular waxes. Fatty acid elongase substrate specificity is determined by a condensing enzyme that catalyzes the first reaction carried out by the complex. In Arabidopsis (Arabidopsis thaliana), characterized condensing enzymes involved in wax synthesis can only elongate VLCFAs up to 28 carbons (C28) in length, despite the predominance of C29 to C31 monomers in Arabidopsis stem wax. This suggests additional proteins are required for elongation beyond C28. The wax-deficient mutant eceriferum2 (cer2) lacks waxes longer than C28, implying that CER2, a putative BAHD acyltransferase, is required for C28 elongation. Here, we characterize the cer2 mutant and demonstrate that green fluorescent protein-tagged CER2 localizes to the endoplasmic reticulum, the site of VLCFA biosynthesis. We use site-directed mutagenesis to show that the classification of CER2 as a BAHD acyltransferase based on sequence homology does not fit with CER2 catalytic activity. Finally, we provide evidence for the function of CER2 in C28 elongation by an assay in yeast (Saccharomyces cerevisiae).Land plants have a lipidic cuticle that seals the outer surface of all of their primary aerial organs. Structurally, the cuticle consists of two components, cutin and cuticular waxes. Together these form a hydrophobic barrier that plays a critical role in plant survival by restricting nonstomatal water loss (Riederer and Schreiber, 2001). Cuticles also protect the plant from biotic and abiotic stresses, profoundly affect plant-insect interactions (Müller, 2006), prevent epidermal fusions (Sieber et al., 2000), and are involved in drought stress signaling (Wang et al., 2011).Cutin is a polymer of mainly midchain- and ω-hydroxy and -epoxy 16 carbon (C16) and C18 fatty acids, which are cross-linked in ester bonds directly or through a glycerol backbone (Pollard et al., 2008). Cuticular waxes are aliphatic monomers that are deposited within the cutin matrix as intracuticular wax, and on top of it as epicuticular wax film and crystals. Wax is a heterogeneous mixture of very-long-chain fatty acids (VLCFAs) and their alkane, aldehyde, alcohol, ketone, and ester derivatives, which typically range from C24 to C32 in length (Samuels et al., 2008). The composition of cuticular wax varies greatly among species and tissues, often providing physical and chemical properties to the plant surface that are advantageous in specific environments.Genetic analyses have revealed that a fatty acid elongase (FAE) complex is responsible for the synthesis of VLCFA wax precursors (Millar et al., 1999; Fiebig et al., 2000; Kunst and Samuels, 2009). FAE complexes are heterotetramers of independently transcribed, monofunctional proteins localized to the endoplasmic reticulum (ER). Together, they catalyze a series of four reactions to elongate long-chain acyl-CoAs or very-long-chain acyl-CoAs by sequential addition of two carbon units. The condensing enzyme, or β-ketoacyl-CoA synthase (KCS), catalyzes the first reaction in this sequence and is both rate limiting and specific for the chain length of acyl-CoA synthesized (Millar and Kunst, 1997). Two very dissimilar families of KCSs have been identified in Arabidopsis (Arabidopsis thaliana): a FAE1-type family homologous to the first such KCS enzyme discovered in association with seed oil biosynthesis (Kunst et al., 1992; James et al., 1995; Lassner et al., 1996), and an ELONGATION DEFECTIVE (ELO)-like family homologous to the yeast (Saccharomyces cerevisiae) ELO family responsible for sphingolipid synthesis (Dunn et al., 2004). To date, no function has been ascribed to Arabidopsis ELOs. Of the 21 FAE1-type KCS enzymes in Arabidopsis (Joubès et al., 2008), 11 have been shown by microarray analysis to be up-regulated in the stem epidermis (Suh et al., 2005). Only one of these, ECERIFERUM6 (CER6/KCS6/CUT1; Millar et al., 1999; Fiebig et al., 2000; Joubès et al., 2008), has a dominant role in the elongation of VLCFAs for cuticular wax synthesis, as CER6 suppression results in a dramatic reduction of all wax monomers longer than C24 (Millar et al., 1999). Heterologous expression of CER6 in yeast has demonstrated that the CER6 condensing enzyme can produce C28 VLCFAs (O. Rowland and L. Kunst, unpublished data). However, CER6 appears to be unable to produce VLCFAs longer than C28 in yeast; this presents a problem as the bulk of Arabidopsis stem wax is made up of C29 alkanes, secondary alcohols, and ketones derived from C30 VLCFAs. Mutant screens have not revealed any other KCS enzymes necessary for VLCFA elongation past C28 in Arabidopsis. Therefore, there may be other proteins unrelated to condensing enzymes that are required for acyl chain extension beyond C28 that remain unknown.The wax-deficient mutant cer2 shows a dramatic reduction in all stem waxes longer than C28 and increased accumulation of waxes C28 or shorter, suggesting that CER2 has a role in the final steps of VLCFA elongation. Surprisingly, the cer2 mutation has been mapped to At4g24510 (Negruk et al., 1996; Xia et al., 1996), a gene homologous to plant BAHD acyltransferases. However, the CER2 protein was reported to localize exclusively to the nucleus (Xia et al., 1997). This does not fit with CER2 annotation as a BAHD acyltransferase, as all characterized BAHD acyltransferases are soluble cytosolic enzymes (D’Auria, 2006).The objective of this work was to more precisely evaluate the role of CER2 in fatty acid elongation using a new CER2 allele, cer2-5 (Columbia-0 Col-0] ecotype). We provide evidence that CER2 has a metabolic function specific to wax synthesis, and that the CER2 homolog CER2-LIKE1 has an analogous role in leaf wax synthesis. Despite the classification of CER2 as a BAHD acyltransferase based on sequence homology, we demonstrate that CER2 cannot share the catalytic mechanism that has been confirmed for other members of the BAHD family, and provide biochemical support for a function of CER2 in VLCFA elongation by an assay in yeast.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号