首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
Authors:Reis Gerald F  Yang Ge  Szpankowski Lukasz  Weaver Carole  Shah Sameer B  Robinson John T  Hays Thomas S  Danuser Gaudenz  Goldstein Lawrence S B
Institution:Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
Abstract:Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号