首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of protein secondary structure prediction using binary word encoding
Authors:Takeshi Kawabata  Junta Doi
Abstract:
We propose a binary word encoding to improve the protein secondary structure prediction. A binary word encoding encodes a local amino acid sequence to a binary word, which consists of 0 or 1. We use an encoding function to map an amino acid to 0 or 1. Using the binary word encoding, we can statistically extract the multiresidue information, which depends on more than one residue. We combine the binary word encoding with the GOR method, its modified version, which shows better accuracy, and the neural network method. The binary word encoding improves the accuracy of GOR by 2.8%. We obtain similar improvement when we combine this with the modified GOR method and the neural network method. When we use multiple sequence alignment data, the binary word encoding similarly improves the accuracy. The accuracy of our best combined method is 68.2%. In this paper, we only show improvement of the GOR and neural network method, we cannot say that the encoding improves the other methods. But the improvement by the encoding suggests that the multiresidue interaction affects the formation of secondary structure. In addition, we find that the optimal encoding function obtained by the simulated annealing method relates to non-polarity. This means that nonpolarity is important to the multiresidue interaction. Proteins 27:36–46 © 1997 Wiley-Liss, Inc.
Keywords:GOR  neural networks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号