首页 | 本学科首页   官方微博 | 高级检索  
   检索      


B7-2 (CD86) controls the priming of autoreactive CD4 T cell response against pancreatic islets
Authors:Yadav Deepak  Judkowski Valeria  Flodstrom-Tullberg Malin  Sterling Lori  Redmond William L  Sherman Linda  Sarvetnick Nora
Institution:Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
Abstract:The B7-1/2-CD28 system provides the critical signal for the generation of an efficient T cell response. We investigated the role played by B7-2 in influencing pathogenic autoimmunity from islet-reactive CD4 T cells in B7-2 knockout (KO) NOD mice which are protected from type 1 diabetes. B7-2 deficiency caused a profound diminishment in the generation of spontaneously activated CD4 T cells and islet-specific CD4 T cell expansion. B7-2 does not impact the effector phase of the autoimmune response as adoptive transfer of islet Ag-specific BDC2.5 splenocytes stimulated in vitro could easily induce disease in B7-2KO mice. CD4 T cells showed some hallmarks of hyporesponsiveness because TCR/CD28-mediated stimulation led to defective activation and failure to induce disease in NODscid recipients. Furthermore, CD4 T cells exhibited enhanced death in the absence of B7-2. Interestingly, we found that B7-2 is required to achieve normal levels of CD4+CD25+CD62L+ T regulatory cells because a significant reduction of these T regulatory cells was observed in the thymus but not in the peripheral compartments of B7-2KO mice. In addition, our adoptive transfer experiments did not reveal either pathogenic or regulatory potential associated with the B7-2KO splenocytes. Finally, we found that the lack of B7-2 did not induce a compensatory increase in the B7-1 signal on APC in the PLN compartment. Taken together these results clearly indicate that B7-2 plays a critical role in priming islet-reactive CD4 T cells, suggesting a simplified, two-cell model for the impact of this costimulatory molecule in autoimmunity against islets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号