首页 | 本学科首页   官方微博 | 高级检索  
     


Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters
Authors:Mayer Maria  Schaaf Gabriel  Mouro Isabelle  Lopez Claude  Colin Yves  Neumann Petra  Cartron Jean-Pierre  Ludewig Uwe
Affiliation:1.Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, D-72076 Tübingen, Germany; 2.INSERM U76, INTS, 75015 Paris, France
Abstract:
The conserved family of AMT/Rh proteins facilitates ammonium transport across animal, plant, and microbial membranes. A bacterial homologue, AmtB, forms a channel-like structure and appears to function as an NH3 gas channel. To evaluate the function of eukaryotic homologues, the human RhCG glycoprotein and the tomato plant ammonium transporter LeAMT1;2 were expressed and compared in Xenopus oocytes and yeast. RhCG mediated the electroneutral transport of methylammonium (MeA), which saturated with Km = 3.8 mM at pHo 7.5. Uptake was strongly favored by increasing the pHo and was inhibited by ammonium. Ammonium induced rapid cytosolic alkalinization in RhCG-expressing oocytes. Additionally, RhCG expression was associated with an alkali-cation conductance, which was not significantly permeable to NH4+ and was apparently uncoupled from the ammonium transport. In contrast, expression of the homologous LeAMT1;2 induced pHo-independent MeA+ uptake and specific NH4+ and MeA+ currents that were distinct from endogenous currents. The different mechanisms of transport, including the RhCG-associated alkali-cation conductance, were verified by heterologous expression in appropriate yeast strains. Thus, homologous AMT/Rh-type proteins function in a distinct manner; while LeAMT1;2 carries specifically NH4+, or cotransports NH3/H+, RhCG mediates electroneutral NH3 transport.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号