首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Limited Contribution of Mucosal IgA to Simian Immunodeficiency Virus (SIV)-Specific Neutralizing Antibody Response and Virus Envelope Evolution in Breast Milk of SIV-Infected,Lactating Rhesus Monkeys
Authors:Sallie R Permar  Andrew B Wilks  Elizabeth P Ehlinger  Helen H Kang  Tatenda Mahlokozera  Rory T Coffey  Angela Carville  Norman L Letvin  Michael S Seaman
Institution:Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115,1. Division of Infectious Disease, Children''s Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115,2. New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 017723.
Abstract:Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.Breastfeeding is an important component of the maternal-infant immune system, providing the infant with passive maternal immunity and protection against infectious pathogens. In fact, non-breast-fed infants in developing nations experience higher mortality due to respiratory and diarrheal illnesses (45). However, breastfeeding is also a mode of infant human immunodeficiency virus (HIV) acquisition, contributing to a large proportion of infant HIV infections in areas of high HIV prevalence. Therefore, development of feeding strategies that promote HIV-free survival of infants born to HIV-infected mothers in developing nations poses a major public health challenge.Interestingly, in the absence of antiretroviral prophylaxis, HIV is transmitted via breast milk to only 10% of infants chronically exposed to the virus via breastfeeding (19, 25). This low rate of HIV transmission suggests that antiviral immune factors in milk may protect the majority of infants from mucosal HIV acquisition. HIV envelope-specific antibody responses have been identified in milk, but the magnitude of these responses is similar in women who transmit the virus via breast milk and women whose infants remain uninfected throughout breastfeeding (3, 11, 23). Likewise, the magnitude of simian immunodeficiency virus (SIV) envelope-specific antibody responses in the milk of SIV-infected, lactating rhesus monkeys did not differ in those mothers that did and did not transmit the virus to their suckling infant (1, 42). Proposed mechanisms for HIV-specific breast milk antibody function include virus neutralization and impairment of virus transcytosis through an epithelial cell layer (3, 7, 17). Therefore, the function, rather than the magnitude, of the HIV-specific breast milk antibody response may be the critical feature in protection against infant mucosal transmission. Importantly, passive transfer of broadly neutralizing HIV-specific antibody to neonatal monkeys protected the infants against oral simian-human immunodeficiency virus (SHIV) challenge, indicating that passively transferred humoral immunity can protect infants from virus transmission through breastfeeding (18, 41).Vertically transmitted HIV variants, including those transmitted via breast milk, have been reported to be resistant to neutralization by systemic maternal antibody responses (9, 38). However, HIV-specific neutralizing antibody responses in breast milk have not been characterized. In fact, the ability of mucosal IgA to neutralize HIV remains an important question in the HIV field. While an HIV-specific mucosal IgA response in the genital tracts of exposed-uninfected individuals has been described, the role of mucosal IgA in protection against mucosal transmission of HIV is unclear and controversial (5, 8-10). Furthermore, the contribution of locally replicating virus at mucosal surfaces to the divergence of the systemic and mucosal antibody responses is unknown. Similarly, the role of mucosal antibody in the shaping of mucosal virus quasispecies evolution is not well characterized. Delineation of the function and role of mucosal antibody responses in defining the pool of transmitted virus will be crucial for the design of immunologic interventions to reduce breast milk transmission of HIV.SIV infection of lactating rhesus monkeys provides an excellent model to characterize virus-specific immune responses and virus evolution in milk, as the sequence of the virus inoculum, the timing of the infection, and the virus-specific immunodominant responses are well defined in this model. Furthermore, SIV-infected, lactating rhesus monkeys transmit the virus to their suckling infants via breastfeeding (1). We have developed a pharmacologic protocol to induce lactation in nonpregnant rhesus monkeys, facilitating these studies without reliance on breeder monkeys. Moreover, the milk produced by hormone-induced, lactating monkeys has immunoglobulin content and a lymphocyte phenotype similar to that produced by naturally lactating monkeys (35). In this study, we characterized the neutralizing potency of the SIV envelope-specific IgG and IgA responses in milk and their role in shaping the SIV envelope gene evolution of local virus variants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号