首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of a polyubiquitin promoter isolated from Gladiolus
Authors:Young Hee Joung  Kathryn Kamo
Affiliation:(1) School of Biological Science and Technology, Chonnam National University, Gwangju, 500-757, Korea;(2) U.S. Department of Agriculture, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705-2350, USA
Abstract:
A polyubiquitin promoter (GUBQ1) including its 5′UTR and intron was isolated from the floral monocot Gladiolus because high levels of expression could not be obtained using publicly available promoters isolated from either cereals or dicots. Sequencing of the promoter revealed highly conserved 5′ and 3′ intron splicing sites for the 1.234 kb intron. The coding sequence of the first two ubiquitin genes showed the highest homology (87 and 86%, respectively) to the ubiquitin genes of Nicotiana tabacum and Oryza sativa RUBQ2. Transient expression following gene gun bombardment showed that relative levels of GUS activity with the GUBQ1 promoter were comparable to the CaMV 35S promoter in gladiolus, tobacco, rose, rice, and the floral monocot freesia. The highest levels of GUS expression with GUBQ1 were attained with Gladiolus. The full-length GUBQ1 promoter including 5′UTR and intron were necessary for maximum GUS expression in Gladiolus. The relative GUS activity for the promoter only was 9%, and the activity for the promoter with 5′UTR and 399 bp of the full-length 1.234 kb intron was 41%. Arabidopsis plants transformed with uidA under GUBQ1 showed moderate GUS expression throughout young leaves and in the vasculature of older leaves. The highest levels of transient GUS expression in Gladiolus have been achieved using the GUBQ1 promoter. This promoter should be useful for genetic engineering of disease resistance in Gladiolus, rose, and freesia, where high levels of gene expression are important.
Keywords:Intron  Calla lily  Freesia  Cannas  Lily  Rice  Tobacco
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号