首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi
Authors:Ronnie JM Lubbers  Adiphol Dilokpimol  Jaap Visser  Miia R Mäkelä  Kristiina S Hildén  Ronald P de Vries
Institution:1. Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands;2. Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
Abstract:Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Keywords:Corresponding author at: Fungal Physiology  Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology  Utrecht University  Uppsalalaan 8  3584 CT Utrecht  the Netherlands    Aromatic metabolism  Fungus  Lignin  Platform chemicals  Plant-derived homocyclic aromatic compounds  Acar  Aryl carboxylic acid reductase  AroY  Protocatechuate decarboxylase  BadA  Benzoate-CoA ligase  BadDEFG  Benzoate-CoA reductase subunits D  E  F and G  BagI  Gentisate 1  2-dioxygenase  BagL  L-cysteine-dependent maleylpyruvate isomerase  BagK  Fumarylpyruvate hydrolase  BclA  Benzoate-CoA ligase  BenABC  Benzoate 1  2-dioxygenase subunits A  B and C  BenD  Benzoate 1  2-dioxygenase subunit D  BphA  Benzoate 4-monooxygenase  BsdBCD  Phenolic acid decarboxylase subunits B  C and D  BzuA  Benzoate 4-monooxygenase  CalA  Coniferyl alcohol dehydrogenase  CalB  Coniferyl aldehyde dehydrogenase  CatA1  Catechol 1  2-dioxygenase 1  CatA2  Catechol 1  2-dioxygenase 2  CatB  Muconate cycloisomerase  CatC  Muconolactone Delta-isomerase  CatD  3-oxoadipate enol-lactonase 2  CatI  3-oxoadipate CoA-transferase subunit A  CatJ  3-oxoadipate CoA-transferase subunit B  ChqB  Hydroxyquinol 1  2-dioxygenase  CMLE  CouL  CouM  CouN  CouO  CprA  Cytochrome P450 reductase  Cso2  Isoeugenol oxygenase 2  DesA  DesB  Gallate dioxygenase  DesV  Aldehyde dehydrogenase  DesZ  DhbA  2  3-dihydroxybenzoic acid 3  4-dioxygenase  DmpB  Catechol 2  3-dioxygenase  DmpC  2-hydroxymuconic semialdehyde dehydrogenase  DmpD  2-hydroxymuconate semialdehyde hydrolase  DmpE  2-oxopent-4-enoate hydratase  DmpF  Acetaldehyde dehydrogenase  DmpG  4-hydroxy-2-oxovalerate aldolase  DmpH  4-oxalocrotonate decarboxylase  DmpI  2-hydroxymuconate tautomerase  DmpLMNOP  Phenol hydroxylase components L  M  N  O and P  Ech  Enoyl-CoA hydratase/aldolase  EhyA  Eugenol hydroxylase alpha-subunit  EhyB  Eugenol hydroxylase beta-subunit  EugO  Eugenol oxidase  Fcs  Feruloyl-CoA synthase  Fdc1  Ferulic acid decarboxylase  FerA  Feruloyl-CoA synthase  FerB  Enoyl-CoA hydratase/aldolase  Fph1  Fumarylpyruvate dioxygenase  GalA  Gallate dioxygenase  GalB  4-oxalmesaconate hydratase  GalC  4-carboxy-4-hydroxy-2-oxoadipic acid aldolase  GalD  4-oxalomesaconate tautomerase  Gdc  Gallic acid decarboxylase  Gdx1  Gentisate dioxygenase  HbaA  4-hydroxybenzoate-CoA ligase  HbaBCD  4-hydroxybenzoyl-CoA reductase subunits B  C and D  HcaB  Dihydrodiol dehydrogenase  HcaEFCD  3-phenylpropionate/cinnamic acid dioxygenase subunits E  F  C and D  HcrBCD  4-hydroxybenzoyl-CoA reductase subunits B  C and D  Hdq1  Hydroxyquinol dioxygenase  Hdq2  Catechol 1  2-dioxygenase  Hdx1  Hydroxyquinol dioxygenase  HMPHP-SCoA  4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA  HMPKP-SCoA  HpaB  4-hydroxyphenylacetate 3-hydroxylase monooxygenase B  HpaC  4-hydroxyphenylacetate 3-hydroxylase oxidoreductase C  HPHP-SCoA  IvaA  Isovanillic acid demethylase  IvaB  Isovanillic acid demethylase reductase  LigAB  Protocatechuate 4  5-dioxygenases alpha chain and beta chain  LigC  4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase  LigI  2-pyrone-4  6-dicarboxylate hydrolase  LigJ  4-oxalmesaconate hydratase  LigK  4-carboxy-4-hydroxy-2-oxoadipate aldolase  LigM  LigU  4-oxalomesaconate tautomerase  LinE  Chlorohydroquinone 1  2-dioxygenase  LinF  Maleylacetate reductase  LpdC  Gallate decarboxylase  Mci1  MhpB  2  3-dihydroxicinnamic acid 1  2-dioxygenase  Mli1  Muconolactone isomerase  Mnx1  4-hydroxybenzoate 1-hydroxylase  Mnx2  3-hydroxybenzoate 6-hydroxylase  Mnx3  Phenol 2-monooxygenase  MobA  3-hydroxybenzoate-4-monooxygenase  NagG  Salicylate 5-hydroxylase large oxygenase component  NagH  Salicylate 5-hydroxylase  small oxygenase component  NahG  Salicylate hydroxylase (decarboxylating)  Oel1  3-oxoadipate enol-lactonase  Osc1  3-oxoadipate CoA-transferase  Pad  Phenolic acid decarboxylase  Pad1  Flavin prenyltransferase  PadC  Phenolic acid decarboxylase  PcaB  PcaC  4-carboxymuconolactone decarboxylase  PcaD  3-oxoadipate enol-lactonase 1  PcaF  Beta-ketoadipyl-CoA thiolase  PcaGH  Protocatechuate 3  4-dioxygenases alpha chain and beta chain  PcaI  3-oxoadipate CoA-transferase subunit A  PcaJ  3-oxoadipate CoA-transferase subunit B  PhgA  PhgB  Gentisyl-CoA thioesterase  PhgC  PhhY  Phenol 2-hydroxylase  PobA  4-hydroxybenzoate-3-hydroxylase  PraA  Protocatechuate 2  3-dioxygenase  PraB  2-hydroxymuconate-6-semialdehyde dehydrogenase  PraC  2-hydroxymuconate tautomerase  PraD  4-oxalocrotonate decarboxylase  PraE  2-hydroxypenta-2  4-dienoate hydratase  PraF  4-hydroxy-2-oxovalerate aldolase  PraG  Acetaldehyde dehydrogenase  PraH  5-carboxy-2-hydroxymuconate-6-semialdehyde decarboxylase  PraI  4-hydroxybenzoate-3-hydroxylase  Sam5  4-coumarate 3-hydroxylase  Sdc  Salicylic acid decarboxylase  SdgA  Salicylyl-AMP ligase  SdgB  Salicylyl-CoA synthetase  SdgC  Salicylyl-CoA 5-hydroxylase  SdgD  Gentisate 1  2-dioxygenase  Sdo  Salicylate 1  2-dioxygenase  StyA  Styrene-monooxygenase A  StyB  Styrene-monooxygenase B  StyC  Styrene-oxide isomerase  StyD  Phenylacetaldehyde dehydrogenase  TCA  Tricarboxylic acid cycle  VanA  VanB  VaO  Vanillyl-alcohol oxidase  VdcC  Vanillate decarboxylase  Vdh  Vanillin dehydrogenase  VerA  VerB  VprA  Vinylphenol reductase  XlnD  3-hydroxybenzoate 6-hydroxylase  XylE  Catechol 2  3-dioxygenase  XylF  2-hydroxymuconate semialdehyde hydrolase  XylG  2-hydroxymuconic semialdehyde dehydrogenase  XylK  4-hydroxy-2-oxovalerate aldolase  YfmT  Benzaldehyde dehydrogenase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号