首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion-gelation method
Authors:Malakar Jadupati  Nayak Amit Kumar  Pal Dilipkumar
Institution:a Bengal College of Pharmaceutical Science and Research, Durgapur-713212, West Bengal, India
b Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Orissa, India
c School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Delhi Road, Moradabad-244 102, U.P., India
Abstract:This work investigates the development, optimization and in vitro evaluation of liquid paraffin-entrapped multiple-unit alginate-based floating system containing cloxacillin by emulsion-gelation method for gastro retentive delivery. The effect of process variables like drug to polymer ratio by weight, and liquid paraffin to water ratio by volume on various physicochemical properties in case of liquid paraffin-entrapped calcium alginate beads containing cloxacillin applicable to drug entrapment efficiency, density and drug release was optimized using 32 factorial design and analyzed using response surface methodology. The observed (actual values) responses were coincided well with the predicted values, given by the optimization technique. The optimized beads showed drug entrapment efficiency of 64.63 ± 0.78%, density of 0.90 ± 0.05 g/cm3, and drug release of 56.72 ± 0.85% in simulated gastric fluid (pH 1.2) after 8 h with floating lag time of 8.45 min and floated well over 12 h in simulated gastric fluid (pH 1.2). The average size of all dried beads ranged from 1.73 ± 0.04 to 1.97 ± 0.08 mm. The beads were characterized by SEM and FTIR for surface morphology and excipients-drug interaction analysis, respectively. All these beads showed prolonged sustained release of cloxacillin over 8 h in simulated gastric fluid (pH 1.2). The cloxacillin release profile from liquid paraffin beads followed Korsmeyer-Peppas model over a period of 8 h with anomalous (non-Fickian) diffusion mechanism for drug release.
Keywords:Calcium alginate  Liquid paraffin  Beads  Floating system  Formulation parameters  Optimization  Response surface methodology
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号