首页 | 本学科首页   官方微博 | 高级检索  
     


Biomechanical capabilities influence postural control strategies in the cat hindlimb
Authors:McKay J Lucas  Burkholder Thomas J  Ting Lena H
Affiliation:School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Abstract:During postural responses to perturbations, horizontal plane forces generated by the cat hindlimb are stereotypically directed either towards or away from the animal's center of mass, independent of perturbation direction. We used a static, three-dimensional musculoskeletal model of the hindlimb to investigate possible biomechanical determinants of this "force constraint strategy." We hypothesized that directions in which the hindlimb can produce large forces are preferentially used in postural control. We computed feasible force sets (FFSs) based on hindlimb configurations of three cats during postural equilibrium tasks and compared them to horizontal plane postural force directions. The grand mean FFS was bimodal, with maxima near the posterior-anterior axis (-86+/-8 degrees and 71+/-4 degrees ), and minima near the medial-lateral axis (177+/-8 degrees and 8+/-8 degrees ). Experimental postural force directions clustered near both maxima; there were no medial postural forces near the absolute minimum. However, the medians of the anterior and posterior postural force direction histograms in the right hindlimb were rotated counter-clockwise from the FFS maxima (p<0.05; Wilcoxon signed-rank test). Because the posterior-anterior alignment of the FFS is consistent with a hindlimb structure optimized for locomotion, we conclude that the biomechanical capabilities of the hindlimb strongly influence, but do not uniquely determine the force directions observed in the force constraint strategy. Forces used in postural control may reflect a balance between a neural preference for using forces in the directions of large feasible forces and other criteria, such as the stabilization of the center of mass, and muscular coordination strategies.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号