首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Minimal Deneddylase Core of the COP9 Signalosome Excludes the Csn6 MPN(-) Domain
Authors:Elah Pick  Amnon Golan  Jacob Z Zimbler  Liquan Guo  Yehonatan Sharaby  Tomohiko Tsuge  Kay Hofmann  Ning Wei
Institution:Department of Biology, University of Haifa at Oranim, Tivon, Israel.
Abstract:The COP9 signalosome (CSN) is a eukaryotic protein complex, which regulates a wide range of biological processes mainly through modulating the cullin ubiquitin E3 ligases in the ubiquitin-proteasome pathway. The CSN possesses a highly conserved deneddylase activity that centers at the JAMM motif of the Csn5 subunit but requires other subunits in a complex assembly. The classic CSN is composed of 8 subunits (Csn1-8), yet in several Ascomycota, the complex is smaller and lacks orthologs for a few CSN subunits, but nevertheless contains a conserved Csn5. This feature makes yeast a powerful model to determine the minimal assemblage required for deneddylation activity. Here we report, that Csi1, a diverged S. cerevisiae CSN subunit, displays significant homology with the carboxyl terminal domain of the canonical Csn6, but lacks the amino terminal MPN(-) domain. Through the comparative and experimental analyses of the budding yeast and the mammalian CSNs, we demonstrate that the MPN(-) domain of the canonical mouse Csn6 is not part of the CSN deneddylase core. We also show that the carboxyl domain of Csn6 has an indispensable role in maintaining the integrity of the CSN complex. The CSN complex assembled with the carboxyl fragment of Csn6, despite its lack of an MPN(-) domain, is fully active in deneddylation of cullins. We propose that the budding yeast Csi1 is a functional equivalent of the canonical Csn6, and thus the composition of the CSN across phyla is more conserved than hitherto appreciated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号