首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Cloning, Bacterial Overexpression and Characterization of L-myo- inositol 1- Phosphate Synthase from a Monocotyledonous Resurrection Plant, Xerophyta viscosa Baker
Authors:Manoj Majee  Barunava Patra  Sagadevan G Mundree  Arun Lahiri Majumder
Institution:1. Plant Molecular and Cellular Genetics, Bose institute (Centenary Building), P-1/12, CIT Scheme VIIM, Kolkata, 700 054, India
2. University of Cape Town, Cape Town, South Africa
Abstract:L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS), an evolutionarily conserved enzyme-protein, catalyses the first and rate limiting step of inositol biosynthesis. Inositol and its derivatives play important roles in biological kingdom like growth regulation, membrane biogenesis, signal transduction and also acts as an osmolyte or osmoprotectant in abiotic stress tolerance. Here we report the cloning, sequencing and the characterization of the INO1 gene from Xerophyta viscosa (XINO1), a monocotyledonous resurrection plant. Nucleotide sequences of XINO1 show striking homology (70–99%) with a number of INO1 genes from plant sources particularly with the monocots. The gene is functionally identified through genetic complementation using a yeast inositol auxotrophic strain FY250. The gene is expressed in E. coli BL21, recombinant protein purified to homogeneity, biochemically characterized and compared with Oryza INO1 (RINO1) gene product. The XINO1 gene product is catalytically active in a broader range of lower temperature (between 10–40 °C) than the RINO1 gene- product. This is the first report of MIPS gene from any resurrection plant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号