首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterotrimeric G protein mediates ethylene‐induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis
Authors:Xiao‐Min Ge  Hong‐Li Cai  Xue Lei  Xue Zhou  Ming Yue  Jun‐Min He
Institution:1. School of Life Sciences, Shaanxi Normal University, Xi'an, China;2. School of Life Sciences, Northwest University, Xi'an, China
Abstract:Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene‐induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild‐type leaves, ethylene‐triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene‐induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene‐triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1‐3 in ethylene‐induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1‐1 and etr1‐9 in ethylene‐induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene‐induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.
Keywords:heterotrimeric G protein  ethylene  stomatal closure  H2O2    subunit  NADPH oxidases  ethylene receptor  signalling     Arabidopsis thaliana   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号