首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cholera toxin A subunit: functional sites correlated with regions of secondary structure
Authors:L K Duffy  A Kurosky  C Y Lai
Abstract:The A subunit of cholera toxin contains the ADP-ribosyltransferase activity in its major constituent polypeptide A1 (Mr 23,000) which is responsible for the elevation of cAMP typically observed with most mammalian cell types after exposure to the toxin. The primary structure of the A subunit, recently established by sequence analyses, is presented and used as the basis for the secondary structure prediction according to the method of Chou and Fasman. The results indicated the presence of 27% alpha-helix, 25% beta-structure, 12% beta-turn, and 36% random coil. The majority of the beta-structure consisted of six strands located in the NH2-terminal portion of the molecule (residues 33-106) covering one-half of the region corresponding to the A1 polypeptide portion. The beta-sheet domain led immediately into the active site region characterized by the alternating structures of beta-pleated sheet and alpha-helix (residues 95-140) similar to that reported for other NAD+ binding proteins. The presence of this structural feature in the region was confirmed by the use of another predictive method (J. Garnier et al., J. Mol. Biol. 1978, 120, 97-120). In addition, two regions (residues 14-18 and 200-214), previously identified to contain binding sites for the B subunit as evidenced by chemical modification and monoclonal antibody studies, were found to be in alpha-helix configuration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号