首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Discovery of [NiFe] Hydrogenase Genes in Metagenomic DNA: Cloning and Heterologous Expression in Thiocapsa roseopersicina
Authors:Gergely Maróti  Yingkai Tong  Shibu Yooseph  Holly Baden-Tillson  Hamilton O Smith  Kornél L Kovács  Marvin Frazier  J Craig Venter  Qing Xu
Institution:J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850,1. Department of Biotechnology, University of Szeged, Szeged, Hungary2.
Abstract:Using a metagenomics approach, we have cloned a piece of environmental DNA from the Sargasso Sea that encodes an NiFe] hydrogenase showing 60% identity to the large subunit and 64% to the small subunit of a Thiocapsa roseopersicina O2-tolerant NiFe] hydrogenase. The DNA sequence of the hydrogenase identified by the metagenomic approach was subsequently found to be 99% identical to the hyaA and hyaB genes of an Alteromonas macleodii hydrogenase, indicating that it belongs to the Alteromonas clade. We were able to express our new Alteromonas hydrogenase in T. roseopersicina. Expression was accomplished by coexpressing only two accessory genes, hyaD and hupH, without the need to express any of the hyp accessory genes (hypABCDEF). These results suggest that the native accessory proteins in T. roseopersicina could substitute for the Alteromonas counterparts that are absent in the host to facilitate the assembly of a functional Alteromonas hydrogenase. To further compare the complex assembly machineries of these two NiFe] hydrogenases, we performed complementation experiments by introducing the new Alteromonas hyaD gene into the T. roseopersicina hynD mutant. Interestingly, Alteromonas endopeptidase HyaD could complement T. roseopersicina HynD to cleave endoproteolytically the C-terminal end of the T. roseopersicina HynL hydrogenase large subunit and activate the enzyme. This study refines our knowledge on the selectivity and pleiotropy of the elements of the NiFe] hydrogenase assembly machineries. It also provides a model for functionally analyzing novel enzymes from environmental microbes in a culture-independent manner.Hydrogen is a promising energy carrier for the future (10). Photosynthetic microbes such as cyanobacteria have attracted considerable attention, because they can split water photolytically to produce H2. However, one major drawback of the processes is that their H2-evolving hydrogenases are extremely sensitive to O2, which is an inherent by-product of oxygenic photosynthesis. Thus, transfer of O2-tolerant NiFe] hydrogenases into cyanobacteria might be one approach to overcome this O2 sensitivity issue. A small number of O2-tolerant hydrogenases has been identified (9, 21, 47). However, they tend to favor H2 uptake over evolution. Searching for novel O2-tolerant NiFe] hydrogenases from environmental microbes therefore becomes an important part of the effort to construct such biophotolytic systems.The oceans harbor an abundance of microorganisms with H2 production capability. Traditionally, new hydrogenases have been screened only from culturable organisms. However, since only a few microbes can be cultured (14), many of them have not been identified, and their functions remain unknown. Metagenomics is a rapidly growing field, which allows us to obtain information about uncultured microbes and to understand the true diversity of microbes in their natural environments. Metagenomics analysis provides a completely new approach for identifying novel NiFe] hydrogenases from the oceans in a culture-independent manner. The Global Ocean Sampling (GOS) expedition has produced the largest metagenomic data set to date, providing a rich catalog of proteins and protein families, including those enzymes involved in hydrogen metabolism (45, 52, 56-58). Putative novel NiFe] hydrogenase enzymes that were identified from marine microbial metagenomic data in these expeditions can be examined to find potentially important new hydrogenases. Because source organisms for metagenomic sequences are not typically known, these hydrogenases have to be heterologously expressed in culturable foreign hosts for protein and functional analyses.Unlike most proteins, hydrogenases have a complex architecture and must be assembled and matured through a multiple-step process (7, 11). Hydrogenases are divided into three distinct groups based on their metal contents (54): Fe-S cluster-free hydrogenases (22, 23, 48), FeFe] hydrogenases (1, 12, 25), and NiFe] hydrogenases (2, 3, 55). NiFe] hydrogenases are heterodimers composed of a large subunit and a small subunit, and their NiFe catalytic centers are located in the large subunits (2, 15, 19, 40). A whole set of accessory proteins are required to properly assemble the catalytic centers (7). The accessory protein HypE first interacts with HypF to form a HypF-HypE complex, and the carbamyl group linked to HypF is then dehydrated by HypE in the presence of ATP to release the CN group that is transferred to iron through a HypC-HypD-HypE complex (6). The origin of the CO ligand that is also bound to the iron is not clear, and possibly it comes from formate, formyl-tetrahydrofolate, or acetate. The liganded Fe atom is inserted into the immature large subunit, in which HypC proteins function as chaperones to facilitate the metal insertion (5, 34, 36). Ni is delivered to the catalytic center by the zinc-metalloenzyme HypA that interacts with HypB, a nickel-binding and GTP-hydrolyzing protein. The final step in the maturation process is endoproteolytic cleavage. Once the nickel is transferred to the active site, the endopeptidase, such as HyaD or HynD, cleaves the C-terminal end of the large subunit (33, 43), which triggers a conformational change of the protein so that the Ni-Fe catalytic center can be internalized.Heterologous expression of functional NiFe] hydrogenases has been demonstrated in several studies (4, 18, 31, 39, 44, 50), suggesting that it could be a feasible approach to express novel hydrogenases from the environment for functional analysis. In this study, we sought to prove the concept that metagenomically derived environmental DNA can give rise to a functional NiFe] hydrogenase through expression in a foreign host and that novel NiFe] hydrogenases from environmental microbes can be studied in a culture-independent manner. We cloned environmental DNA that harbors the genes of a putative novel hydrogenase that shows strong homology to a known O2-tolerant hydrogenase, HynSL, from the phototrophic purple sulfur bacterium Thiocapsa roseopersicina (21, 28, 41, 59). We heterologously expressed the two structural genes (hyaA and hyaB) and two accessory genes (hupH and hyaD) of this novel environmental hydrogenase in T. roseopersicina, a foreign host that may already have the necessary machinery required to process the environmental hydrogenase since it carries the homologous hydrogenase HynSL. We analyzed the new hydrogenase protein and its functions. In addition, we compared the maturation mechanisms between the two homolog hydrogenases by performing complementation experiments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号