首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the Three-Dimensional Architecture of the Collagen Adhesin EmaA of Aggregatibacter actinomycetemcomitans by Electron Tomography
Authors:Chunxiao Yu  Keith P. Mintz  Teresa Ruiz
Affiliation:Department of Microbiology and Molecular Genetics,1. Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 054052.
Abstract:The periodontal pathogen Aggregatibacter actinomycetemcomitans displays on the bacterial surface a nonfimbrial adhesin, EmaA, which is required for collagen binding. In this study, electron tomography was used to characterize the three-dimensional (3D) architecture of this adhesin. The antenna-like surface appendages, corresponding to EmaA, were found to be composed of an ellipsoidal domain capping a rod-like domain that adopts either a straight or a bent conformation at various positions along the length. The most common flexible point along the length of the EmaA appendage was localized 29.4 nm away from the distal end. One-fifth of the appendages were straight and the remaining showed angles distributed between 140° and 170° at this location. Deletion analysis mapped this bend to amino acids 611 to 640 of the protein sequence. The 3D structure of the collagen binding domain of EmaA was generated by alignment and averaging of 9 subvolumes of the adhesin extracted from tomograms. The structure contains three subdomains: a globular structure with a diameter of ∼5 nm and a cylindrical domain (∼4.4 nm by 5.8 nm) separated by a linker region with a diameter of ∼3 nm, followed by a cylindrical domain (∼4.6 nm by 6.6 nm). This is the first 3D structure of a trimeric autotransporter protein of A. actinomycetemcomitans.Bacterial adhesion to host receptors, a crucial step for colonization and infection, is mediated by fimbrial and nonfimbrial adhesins. These adhesins are proteinaceous appendages displayed on the surface of bacteria and contain the receptor binding domains. Aggregatibacter actinomycetemcomitans, a gram-negative, nonmotile bacterium is found associated with periodontal diseases and other extraoral infections (12, 23, 32, 40). When isolated from the oral cavity, the bacterium exists as a fimbriated form and switches to an afimbriated form upon planktonic subculturing (5, 14). A. actinomycetemcomitans fimbriae mediate the nonspecific adherence of the bacterium to abiotic and organic surfaces and decorate the bacterial surface with long fibrils of 5 to 7 nm in diameter (14, 15). In addition to fimbriae, nonfimbrial adhesins, which mediate the specific binding to host cells and tissues, have been identified in this bacterium (1, 6, 19, 27, 29). Among these nonfimbrial adhesins, only the extracellular matrix protein adhesin A, EmaA, has been visualized forming structures on the bacterial surface by transmission electron microscopy (29).EmaA is an outer membrane collagen adhesin unique to A. actinomycetemcomitans; however, orthologous proteins exist in other bacterial genera (13, 18, 21, 26, 33, 38). The protein is encoded by a 6-kb gene present in all A. actinomycetemcomitans strains investigated (36). Genetic heterogeneity within the gene exists between different strains, which are based on the serotype of the organism. Based on this heterogeneity, two molecular forms of the protein have been identified: a full-length and an intermediate form. The prototypic or full-length protein exists as a 202-kDa protein and shares 75% amino acid homology with the intermediate form. The intermediate protein form (173 kDa) contains an in-frame 279-amino-acid deletion but maintains collagen binding activity and surface appendages similar to the prototypic form (36).EmaA is associated with the binding of A. actinomycetemcomitans to both isolated acid-soluble collagen and collagen found in tissues (19, 29, 35, 39). The specificity of EmaA for collagen was demonstrated using a rabbit cardiac valve tissue model (35). Valves with an intact endothelium bound equal amounts of the wild type or emaA isogenic mutants. Removal of the endothelium by trypsin treatment, thereby exposing the underlying collagen, did not affect the level of binding of the mutant. However, the number of wild-type bacteria bound to the exposed collagen was five times the number of mutant bacteria. This represents a 10-fold increase with respect to the number of bacteria bound to the endothelium. The role of EmaA as a virulence determinant in A. actinomycetemcomitans infection was demonstrated in a rabbit endocarditis infection model, in which the wild-type bacterium outcompeted the binding of the mutant 10-fold (35).Sequence analysis indicates that EmaA belongs to the Oca (oligomeric coiled-coil adhesin) family of autotransporter adhesins (19). Multimers of EmaA oligomerize to form appendages on the bacterial surface and are visible as long rods or antenna-like structures capped by an ellipsoidal domain (29). A strong correlation exists between the translocated region of the protein (head and stalk domains) and the structural features. The head domain, consisting of amino acids 70 to 386, forms the ellipsoidal ending of the appendage, which is essential for collagen binding, while amino acids 387 to 1900 form the stalk domain (39).Contained within the translocation domain of EmaA are three “neck” sequences, which are conserved in the Oca family protein members (21, 29, 33). These sequences are considered to stabilize the oligomer and transition between β-rolls and coiled-coil regions of the molecule (21, 26). In the EmaA sequence, two “neck” sequences are found within the first 628 amino acids of the protein sequence (19, 29). The third sequence is located in the stalk domain adjacent to the carboxy-terminal membrane anchor domain, which comprises amino acids 1901 to 1965 (19, 29). The membrane anchor domains of three or four monomers are proposed to form β-barrels that are required for pore formation and protein translocation (18, 29, 37).The translocated domain of EmaA has been subjected to a two-dimensional (2D) study by transmission electron microscopy, and the overall dimensions of the EmaA appendages have been determined by the analysis of a large number of micrographs (29). The ellipsoidal ending shows diameters of 2.8 by 4.6 nm, and the stalk domain, which is at least 150 nm long, has a diameter of 4.1 nm. Several conformations of the stalk domain were present in the micrographs: either straight or containing a bend at 29.2 nm from the distal end. This bend position was correlated with amino acids localized between the first two neck sequences (29).In this study, electron tomography was used to characterize the 3D structure of the EmaA appendages of A. actinomycetemcomitans in situ. The functional domain of EmaA was found to be composed of three distinct subdomains followed by a long stalk domain. Distinct regions of the molecule were identified that provide flexibility for the molecule and allow for the deformation or bending of the adhesin. A correlation between these flexible regions and specific amino acids in the sequence was ascertained.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号