首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Deriving topological constraints from functional data for the design of reagentless fluorescent immunosensors
Authors:Renard Martial  Belkadi Laurent  Bedouelle Hugues
Institution:Department of Structural Biology and Chemistry, (CNRS URA 2185), Institut Pasteur, 28 Rue de Docteur Roux, 75724, Cedex 15, Paris, France.
Abstract:The possibility of obtaining, from any antibody, a fluorescent conjugate which responds to the binding of the antigen by a variation of fluorescence, would be of great interest in the micro- and nano-analytical sciences. This possibility was explored with antibody mAb4E11, which is directed against the dengue virus and for which no structural data is available. Three rules of design were developed to identify residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. (i) The target residue belonged to the hypervariable loops of the antibody. (ii) It was adjacent, along the amino acid sequence of the antibody, to a residue which was functionally important for the interaction with the antigen. (iii) It was not important in itself for the interaction with the antigen. Eight conjugates between a single chain variable fragment of mAb4E11 and an environment-sensitive fluorophore were constructed. Three of them showed an increase in their fluorescence intensity by 1.5-2.8-fold on antigen binding, without loss of affinity. This increase allowed the titration of the antigen in serum above a threshold concentration of 10nM. Experiments of quenching with potassium iodide suggested that the fluorescence variation was due to a shielding of the fluorescent group from the solvent by the binding of the antigen, and that therefore its mechanism is general.
Keywords:antibody  biosensor  dengue virus  fluorescence  protein design
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号