Ordered subset linkage analysis based on admixture proportion identifies new linkage evidence for alcohol dependence in African-Americans |
| |
Authors: | Shizhong Han Joel Gelernter Henry R. Kranzler Bao-Zhu Yang |
| |
Affiliation: | 1. Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut and VA CT Healthcare Center 116A2, 950 Campbell Avenue, West Haven, CT, USA 2. Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA 3. Departments of Genetics and of Neurobiology, Yale University School of Medicine, New Haven, CT, USA 4. Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA 5. VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, PA, USA
|
| |
Abstract: | Genetic heterogeneity could reduce the power of linkage analysis to detect risk loci for complex traits such as alcohol dependence (AD). Previously, we performed a genomewide linkage analysis for AD in African-Americans (AAs) (Biol Psychiatry 65:111–115, 2009). The power of that linkage analysis could have been reduced by the presence of genetic heterogeneity owing to differences in admixture among AA families. We hypothesized that by examining a study sample whose genetic ancestry was more homogeneous, we could increase the power to detect linkage. To test this hypothesis, we performed ordered subset linkage analysis in 384 AA families using admixture proportion as a covariate to identify a more homogeneous subset of families and determine whether there is increased evidence for linkage with AD. Statistically significant increases in lod scores in subsets relative to the overall sample were identified on chromosomes 4 (P = 0.0001), 12 (P = 0.021), 15 (P = 0.026) and 22 (P = 0.0069). In a subset of 44 families with African ancestry proportions ranging from 0.858 to 0.996, we observed a genomewide significant linkage at 180 cM on chromosome 4 (lod = 4.24, pointwise P < 0.00001, empirical genomewide P = 0.008). A promising candidate gene located there, GLRA3, which encodes a subunit of the glycine neurotransmitter receptor. Our results demonstrate that admixture proportion can be used as a covariate to reduce genetic heterogeneity and enhance the detection of linkage for AD in an admixed population such as AAs. This approach could be applied to any linkage analysis for complex traits conducted in an admixed population. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|