Impact of sulfur on density of Tetranychus pacificus (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae) in a central California vineyard |
| |
Authors: | Michael J. Costello |
| |
Affiliation: | (1) Cooperative Extension, University of California, Fresno County, CA, USA;(2) Present address: Horticulture and Crop Science Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA |
| |
Abstract: | Sulfur is the oldest and most widely used fungicide in the vineyards of California, where it is used for control of powdery mildew (Uncinula necator [Schw.] Burr). For decades, sulfur use has been associated with outbreaks of Tetranychus pacificus McGregor (Acari: Tetranychidae) on cultivated grapes in the San Joaquin Valley. I undertook large-scale field studies to test this association, to evaluate the impact of sulfur on Galendromus occidentalis (Nesbit) (Acari: Phytoseiidae), a major predator of T. pacificus, and to determine if timing of sulfur applications with respect to grape bloom has an impact on T. pacificus density. The studies took place in a 32 ha vineyard in Fresno County, and all fungicide applications were made with commercial-scale equipment. In 1998 a ‘high sulfur’ treatment, a combination of wettable sulfur and sulfur dust, was compared to ‘low sulfur,’ in which demethylation inhibitor (DMI) fungicides partially substituted for sulfur. In 1999 treatments were ‘sulfur,’ ‘DMI,’ ‘sulfur pre-bloom’ (here sulfur was applied prior to grape bloom, in late May, and then DMIs were applied until mid-season) and ‘sulfur post-bloom’ (the reverse of ‘sulfur pre-bloom’). In each year, the T. pacificus population increase came after the end of fungicide applications, and results clearly show a relationship between sulfur use and T. pacificus density. In 1998, mean T. pacificus density was 2.7 times higher and mean G. occidentalis density 2.5 times higher in ‘high sulfur’ compared to ‘low sulfur.’ In 1999, the highest T. pacificus counts were in the ‘sulfur’ and ‘sulfur pre-bloom’ treatments, 4.8 times higher than ‘sulfur post-bloom’ and 2 times higher than ‘DMIs.’ Density of G. occidentalis was 2.3 times as high in ‘sulfur’ or ‘sulfur pre-bloom’ than ‘DMIs.’ The predator/prey ratio was not significantly different among treatments in 1998, but in 1999 it was highest in the ‘sulfur pre-bloom’ treatment. In 1999, density of Homeopronematus anconai (Baker) (Acari: Tydeidae) was 2.7 times higher in ‘sulfur pre-bloom’ compared to ‘sulfur,’ and higher by 2.7 times in ‘DMI’ compared to ‘sulfur post-bloom,’ suggesting a negative effect of sulfur on this tydeid. These results do not support the hypotheses that the cause of the increase in T. pacificus density is due to negative effects of sulfur on phytoseiids or tydeids. Rather, it appears that a plant-based explanation is likely, first, because of the differences in pre-bloom versus post-bloom sulfuring, and second, because of the long lag time between the end of the sulfur applications and the corresponding increase in spider mite density. |
| |
Keywords: | Spider mites Vineyard Sulfur Grape Phytoseiids Fungicides |
本文献已被 PubMed SpringerLink 等数据库收录! |
|