Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity |
| |
Authors: | van der Veen Bart A Potocki-Véronèse Gabrielle Albenne Cécile Joucla Gilles Monsan Pierre Remaud-Simeon Magali |
| |
Affiliation: | Centre de Bioingénierie Gilbert Durand, UMR CNRS 5504, UMR INRA 792, INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France. |
| |
Abstract: | Amylosucrase is a glucosyltransferase belonging to family 13 of glycoside hydrolases and catalyses the formation of an amylose-type polymer from sucrose. Its potential use as an industrial tool for the synthesis or the modification of polysaccharides, however, is limited by its low catalytic efficiency on sucrose alone, its low stability, and its side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling, and selective screening (directed evolution) was started, in order to generate more efficient variants of the enzyme. A convenient zero background expression cloning strategy was developed. Mutant gene libraries were generated by error-prone polymerase chain reaction (PCR), using Taq polymerase with unbalanced dNTPs or Mutazyme™, followed by recombination of the PCR products by DNA shuffling. A selection method was developed to allow only the growth of amylosucrase active clones on solid mineral medium containing sucrose as the sole carbon source. Automated protocols were designed to screen amylosucrase activity from mini-cultures using dinitrosalicylic acid staining of reducing sugars and iodine staining of amylose-like polymer. A pilot experiment using the described mutagenesis, selection, and screening methods yielded two variants with significantly increased activity (five-fold under the screening conditions). Sequence analysis of these variants revealed mutations in amino acid residues which would not be considered for rational design of improved amylosucrase variants. A method for the characterisation of amylosucrase action on sucrose, consisting of accurate measurement of glucose and fructose concentrations, was introduced. This allows discrimination between hydrolysis and transglucosylation, enabling a more detailed comparison between wild-type and mutant enzymes. |
| |
Keywords: | Author Keywords: Amylosucrase Zero background expression cloning Error-prone polymerase chain reaction Gene shuffling Positive selection Efficiency screening |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|