Abstract: | Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.Plant vacuoles are vital organelles for maintaining cell volume and cell turgor, regulating ion homeostasis and pH, disposing toxic materials, and storing and degrading unwanted proteins (Marty, 1999). To perform these diverse functions, vacuoles require an array of different and complex proteins. These proteins are synthesized at the endoplasmic reticulum (ER) and are transported to the vacuole through the vacuolar trafficking pathway. Perturbation of the vacuolar trafficking machinery affects many cellular processes, including tropisms, responses to pathogens, cytokinesis, hormone transport, and signal transduction (Surpin and Raikhel, 2004). The vacuolar trafficking system is comprised of several compartments: the ER, the Golgi apparatus, the trans-Golgi network (TGN), the prevacuolar compartment (PVC), and the vacuole. Vacuolar proteins synthesized at the ER are transported to the cis-Golgi via coat protein complex II (COPII) vesicles and are then transported to the TGN through the Golgi apparatus. In the TGN, proteins are sorted for delivery to their respective locations according to their targeting signal. Vacuolar proteins carrying a vacuolar sorting signal are thought to be recognized by vacuolar sorting receptors (VSRs), which are mainly located in the PVC, although sorting of vacuolar proteins may also occur at the ER and VSRs can be recycled from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). Multiple studies suggest that plant VSRs serve as sorting receptors both for lytic vacuole proteins (daSilva et al., 2005; Foresti et al., 2006; Kim et al., 2010) and for storage vacuole proteins (Shimada et al., 2003; Fuji et al., 2007; Zouhar et al., 2010).Osmotic stress is commonly associated with many environmental stresses, including drought, cold, and high soil salinity, that have a severe impact on the productivity of agricultural plants worldwide. Therefore, understanding how plants perceive and respond to osmotic stress is critical for improving plant resistance to abiotic stresses (Zhu, 2002; Fujita et al., 2013). It has long been recognized that osmotic stress can activate several signaling pathways that lead to changes in gene expression and metabolism. One important regulator of these signaling pathways is the phytohormone abscisic acid (ABA), which accumulates in response to osmotic stress. ABA regulates many critical processes, such as seed dormancy, stomatal movement, and adaptation to environmental stress (Finkelstein and Gibson, 2002; Xiong and Zhu, 2003; Cutler et al., 2010). De novo synthesis of ABA is of primary importance for increasing ABA levels in response to abiotic stress. ABA is synthesized through the cleavage of a C40 carotenoid originating from the 2-C-methyl-d-erythritol-4-phosphate pathway, followed by a conversion from zeaxanthin to violaxanthin catalyzed by the zeaxanthin epoxidase ABA1 and then to neoxanthin catalyzed by the neoxanthin synthase ABA4. Subsequently, a 9-cis-epoxycarotenoid dioxygenase (NCED) cleaves the violaxanthin and neoxanthin to xanthoxin. Xanthoxin, in turn, is oxidized by a short-chain alcohol dehydrogenase (ABA2) to abscisic aldehyde, which is converted to ABA by abscisic acid aldehyde oxidase3 (AAO3) using a molybdenum cofactor activated by the molybdenum cofactor sulfurase (ABA3; Nambara and Marion-Poll, 2005). In this pathway, it is generally thought that the cleavage step catalyzed by NCED is the rate-limiting step (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). In Arabidopsis (Arabidopsis thaliana), five members of the NCED family (NCED2, NCED3, NCED5, NCED6, and NCED9) have been characterized (Tan et al., 2003). Of those, NCED3 has been suggested to play a crucial role in ABA biosynthesis, and its expression is induced by dehydration and osmotic stress (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). Thus, understanding how the NCED3 gene is activated in response to osmotic stress is important for the elucidation of the mechanisms that govern plant acclimation to abiotic stress.We have used the firefly luciferase reporter gene driven by the stress-responsive NCED3 promoter to enable the genetic dissection of plant responses to osmotic stress (Wang et al., 2011). Here, we report the characterization of a unique regulator of ABA biosynthesis, 9-cis Epoxycarotenoid Dioxygenase Defective2 (CED2). The ced2 mutants are impaired in osmotic stress tolerance and are defective in the expression of genes required for ABA synthesis and consequently osmotic stress-induced ABA accumulation. The CED2 gene encodes VSR1, previously known to be involved in vacuolar trafficking but not known to be critical for osmotic stress induction of ABA biosynthesis and osmotic stress tolerance. Our study further suggests that intracellular pH changes might act as an early stress response signal triggering osmotic stress-activated ABA biosynthesis. |