Escherichia coli O157:H7 and Other E. coli Strains Share Physiological Properties Associated with Intestinal Colonization |
| |
Authors: | Lisa Jacobsen Lisa Durso Tyrell Conway Kenneth W. Nickerson |
| |
Affiliation: | School of Biological Sciences, University of Nebraska, Lincoln, Nebraska,1. Meat Animal Research Center, Clay Center, Nebraska,2. Department of Microbiology, The University of Oklahoma, Norman, Oklahoma3. |
| |
Abstract: | Escherichia coli isolates (72 commensal and 10 O157:H7 isolates) were compared with regard to physiological and growth parameters related to their ability to survive and persist in the gastrointestinal tract and found to be similar. We propose that nonhuman hosts in E. coli O157:H7 strains function similarly to other E. coli strains in regard to attributes relevant to gastrointestinal colonization.Escherichia coli is well known for its ecological versatility (15). A life cycle which includes both gastrointestinal and environmental stages has been stressed by both Savageau (15) and Adamowicz et al. (1). The gastrointestinal stage would be subjected to acid and detergent stress. The environmental stage is implicit in E. coli having transport systems for fungal siderophores (4) as well as pyrroloquinoline quinone-dependent periplasmic glucose utilization (1) because their presence indicates evolution in a location containing fungal siderophores and pyrroloquinoline quinone (1).Since its recognition as a food-borne pathogen, there have been numerous outbreaks of food-borne infection due to E. coli O157:H7, in both ground beef and vegetable crops (6, 13). Cattle are widely considered to be the primary reservoir of E. coli O157:H7 (14), but E. coli O157:H7 does not appear to cause disease in cattle. To what extent is E. coli O157:H7 physiologically unique compared to the other naturally occurring E. coli strains? We feel that the uniqueness of E. coli O157:H7 should be evaluated against a backdrop of other wild-type E. coli strains, and in this regard, we chose the 72-strain ECOR reference collection originally described by Ochman and Selander (10). These strains were chosen from a collection of 2,600 E. coli isolates to provide diversity with regard to host species, geographical distribution, and electromorph profiles at 11 enzyme loci (10).In our study we compared the 72 strains of the ECOR collection against 10 strains of E. coli O157:H7 and six strains of E. coli which had been in laboratory use for many years (Table ). The in vitro comparisons were made with regard to factors potentially relevant to the bacteria''s ability to colonize animal guts, i.e., acid tolerance, detergent tolerance, and the presence of the Entner-Doudoroff (ED) pathway (Table ). Our longstanding interest in the ED pathway (11) derives in part from work by Paul Cohen''s group (16, 17) showing that the ED pathway is important for E. coli colonization of the mouse large intestine. Growth was assessed by replica plating 88 strains of E. coli under 40 conditions (Table ). These included two LB controls (aerobic and anaerobic), 14 for detergent stress (sodium dodecyl sulfate [SDS], hexadecyltrimethylammonium bromide [CTAB], and benzalkonium chloride, both aerobic and anaerobic), 16 for acid stress (pH 6.5, 6.0, 5.0, 4.6, 4.3, 4.2, 4.1, and 4.0), four for the ability to grow in a defined minimal medium (M63 glucose salts with and without thiamine), and four for the presence or absence of a functional ED pathway (M63 with gluconate or glucuronate). All tests were done with duplicate plates in two or three separate trials. The data are available in Tables S1 to S14 in the supplemental material, and they are summarized in Table .TABLE 1.E. coli strains used in this studyE. coli strain (n) | Source |
---|
ECOR strains (72) | Thomas Whittman | Laboratory adapted (6) | | K-12 Davis | Paul Blum | CG5C 4401 | Paul Blum | K-12 Stanford | Paul Blum | W3110 | Paul Blum | B | Tyler Kokjohn | AB 1157 | Tyler Kokjohn | O157:H7 (10) | | FRIK 528 | Andrew Benson | ATCC 43895 | Andrew Benson | MC 1061 | Andrew Benson | C536 | Tim Cebula | C503 | Tim Cebula | C535 | Tim Cebula | ATCC 43889 | William Cray, Jr. | ATCC 43890 | William Cray, Jr. | ATCC 43888 | Willaim Cray, Jr. | ATCC 43894 | William Cray, Jr. | Open in a separate windowTABLE 2.Physiological comparison of 88 strains of Escherichia coliGrowth medium or condition | Oxygenc | No. of strains with type of growthb
|
---|
ECOR strains (n = 72)
| Laboratory strains (n = 6)
| O157:H7 strains (n = 10)
|
---|
Good | Poor | None | Variable | Good | Poor | None | Variable | Good | Poor | None | Variable |
---|
LB controla | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 1% SDS | Aerobic | 69 | 3 | 0 | 0 | 6 | 0 | 0 | 0 | 8 | 0 | 0 | 2 | 5% SDS | Aerobic | 68 | 4 | 0 | 0 | 6 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 1% SDS | Anaerobic | 53 | 15 | 4 | 0 | 2 | 3 | 1 | 0 | 1 | 7 | 0 | 2 | 5% SDS | Anaerobic | 0 | 68 | 4 | 0 | 0 | 4 | 2 | 0 | 0 | 7 | 0 | 4 | CTABd (all) | Both | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0.05% BAC | Aerobic | 3 | 11 | 58 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 9 | 1 | 0.2% BAC | Aerobic | 0 | 1 | 71 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 10 | 0 | 0.05% BAC | Anaerobic | 2 | 3 | 67 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 9 | 1 | 0.2% BAC | Anaerobic | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | pH 6.5 | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | pH 6 | Both | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | pH 5 | Both | 70 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 9 | 0 | 0 | 1 | pH 4.6 | Both | 70 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | pH 4.3 | Aerobic | 14 | 0 | 1 | 57 | 3 | 1 | 2 | 0 | 3 | 2 | 0 | 5 | pH 4.3 | Anaerobic | 69 | 3 | 0 | 0 | 3 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | pH 4.1 or 4.2 | Aerobic | 0 | 0 | 72 | 0 | | NDg | | | | | ND | | pH 4.0 | Both | 0 | 0 | 72 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 9 | 1 | M63 with supplemente | | | | | | | | | | | | | | Glucose | Aerobicf | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 | Glucose | Anaerobicf | 70 | 0 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 | Gluconate | Both | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 | Glucuronate | Aerobic | 68 | 2 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 | Glucuronate | Anaerobic | 69 | 1 | 2 | 0 | 5 | 0 | 1 | 0 | 9 | 0 | 1 | 0 | Open in a separate windowaEight LB controls were run, two for each set of LB experiments: SDS, CTAB, benzalkonium chloride (BAC), and pH stress.bGrowth was measured as either +++, +, or 0 (good, poor, and none, respectively), with +++ being the growth achieved on the LB control plates. “Variable” means that two or three replicates did not agree. All experiments were done at 37°C.c“Anaerobic” refers to use of an Oxoid anaerobic chamber. Aerobic and anaerobic growth data are presented together when the results were identical and separately when the results were not the same or the anaerobic set had not been done. LB plates were measured after 1 (aerobic) or 2 (anaerobic) days, and the M63 plates were measured after 2 or 3 days.dCTAB used at 0.05, 0.2%, and 0.4%.eM63 defined medium (3) was supplemented with glucose, gluconate, or glucuronate, all at 0.2%.fIdentical results were obtained with and without 0.0001% thiamine.gND, not determined. |
| |
Keywords: | |
|
|