首页 | 本学科首页   官方微博 | 高级检索  
     


Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon
Authors:Pokroy Boaz  Fitch Andrew N  Lee Peter L  Quintana John P  Caspi El'ad N  Zolotoyabko Emil
Affiliation:Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel. bpokroy@tx.technion.ac.il
Abstract:
In this paper, we present experimental results demonstrating systematic structural distinctions between biogenic and non-biogenic calcium carbonate. Specifically we show, by high-resolution X-ray powder diffraction on dedicated synchrotron beam lines, that the orthorhombic unit cell of the mollusk-made aragonite is anisotropically distorted as compared with that one of geological aragonite. In all investigated shells, belonging to different classes (bivalve, gastropod, and cephalopod) and taken from different habitat origins (sea, fresh water, and land), the maximum elongation of about 0.1-0.2% was found along the c-axis. The lattice distortions along the a-axis were also of the positive sign (elongation) but lower than those along the c-axis, whereas lattice distortions along the b-axis were always negative (contraction). Supporting experiments, including structural analysis after a bleach procedure, measurements of temperature-dependent lattice relaxation, measurements of the CO(2) release at elevated temperatures, signify that the observed structural distinctions are most probably caused by the organic molecules intercalating into the aragonite lattice during biomineralization. Our findings show that in some sense organisms control the atomic structure of the crystals. Deeper understanding of this phenomenon will aid in the development of new approaches to grow biomimetic composites and tailor their properties on a molecular level.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号