首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The contribution of cationic conductances to the potential of rod photoreceptors
Authors:Andrea Moriondo  Giorgio Rispoli
Institution:1. Dipartimento di Biologia ed Evoluzione, Sezione di Fisiologia e Biofisica, National Institute of Neuroscience and Neuroscience Center, Università di Ferrara, Via L. Borsari 46, 44100, Ferrara, Italy
2. DSBSC and Center for Neurosciences, Università dell’Insubria, Via J.H. Dunant 5, 21100, Varese, Italy
Abstract:The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V h) was −40 mV (i.e. corresponding to the membrane potential in the dark). At V h = −60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V h at the stimulus offset. Current steps >40 pA produced a steady depolarisation to ≈−16 mV at both V h. The difference between the responses at the two V h was primarily generated by the slow delayed-rectifier-like K+ current (I Kx), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V h in response to large current injections was instead generated by Ca-activated K+ channels (I KCa), as previously found. Both I Kx and I KCa oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca2+ channels (I Ca). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I h) and I Ca. Blockade of all K+ currents with external TEA unmasked a I Ca-dependent regenerative behaviour.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号