Insulin-like growth factor-I stimulates diacylglycerol production via multiple pathways in Balb/c 3T3 cells |
| |
Authors: | I Kojima M Kitaoka E Ogata |
| |
Affiliation: | Institute of Endocrinology, Gumma University, Maebashi, Japan. |
| |
Abstract: | We previously reported that insulin-like growth factor-I (IGF-I) induced sustained calcium cycling across the plasma membrane in primed competent Balb/c 3T3 cells (Kojima, I., Matsunaga, H., Kurokawa, K., Ogata, E., and Nishimoto, I. (1989) J. Biol. Chem. 263, 16561-16567). The present study was conducted to examine whether IGF-I affected cellular metabolism of 1,2-diacylglycerol (1,2-DAG). In primed competent cells prelabeled with [3H]myristate, 1 nM IGF-I caused a 50% increase in [3H]DAG within 10 min. This increase in [3H]DAG was accompanied by 1) a decrease in radioactivity in the glycosylphosphatidylinositol fraction in [3H]glucosamine-labeled cells and a concomitant increase in [3H]inositol-glycan, and 2) a decrease in [3H]phosphatidylcholine and a concomitant elevation of [3H]phosphorylcholine in [3H]choline-labeled cells. When [3H]choline-labeled cells were treated with 10 nM 12-O-tetradecanoylphorbol-4-acetate (TPA), [3H]phosphatidylcholine was reduced by 50%. The TPA-induced reduction of [3H]phosphatidylcholine was completely blocked by 50 microM sphingosine and 50 microM H-7, inhibitors of protein kinase C. Both sphingosine and H-7 attenuated IGF-I-mediated reduction of [3H]phosphatidylcholine. In addition, treatment with IGF-I for 3 h or more resulted in sustained increase in 1,2-DAG mass, which was attenuated by cycloheximide. The increase in DAG mass was accompanied by enhanced incorporation of [14C]glucose into 1,2-DAG. These results indicate that, in primed competent Balb/c 3T3 cells, IGF-I stimulates 1,2-DAG production via multiple pathways and that IGF-I may induce breakdown of phosphatidylcholine by a mechanism involving protein kinase C. |
| |
Keywords: | |
|
|