首页 | 本学科首页   官方微博 | 高级检索  
     

基于基因表达谱的肿瘤分型和特征基因选取
引用本文:李泽,包雷,黄英武,孙之荣. 基于基因表达谱的肿瘤分型和特征基因选取[J]. 生物物理学报, 2002, 18(4): 413-417
作者姓名:李泽  包雷  黄英武  孙之荣
作者单位:清华大学生物科学与技术系,北京,100084
基金项目:国家自然科学基金项目(19947006)
摘    要:在分析基因表达谱数据特性的基础上,提出了一个将之用于肿瘤分子分型和选型和选取相应亚型特征基因的策略。该策略包括三个步骤:首先采用一个无监督的基因过滤算法以降低用于分型计算的数据的噪声,其次提出了一个概率模型对样本中的分类结构进行建模,最后基于聚类的结果采用相对熵的方法获得对分类贡献大的基因作为特征基因,应用该策略对两个公开发表的数据集进行了再挖掘,结果表明不但获得了其他方法可以得到的信息,而且还提供了更精细、更具有显著生物学意义的信息,具有明显的优越性。

关 键 词:基因表达谱 聚类 特征基因
文章编号:1000-6737(2002)04-0413-05
修稿时间:2002-04-24

CANCER SUBTYPE DISCOVERY AND INFORMATIVE GENE IDENTIFICATION WITH GENE EXPRESSION PROFILES
LI Ze,BAO Lei,HUANG Ying-wu,SUN Zhi-rong. CANCER SUBTYPE DISCOVERY AND INFORMATIVE GENE IDENTIFICATION WITH GENE EXPRESSION PROFILES[J]. Acta Biophysica Sinica, 2002, 18(4): 413-417
Authors:LI Ze  BAO Lei  HUANG Ying-wu  SUN Zhi-rong
Abstract:Because of their significance in cancer diagnosis and treatment, discovering new subtypes within cancers and identifying the characteristically expressed genes for each subtype based on gene ex-pression data analysis become more and more popular in recent research. A major challenge to find new subtypes is to eliminate noise, such that the newly discovered subtypes are biologically relevant and not related to experimental conditions. Several algorithms were presented in the literature but most of them gave insufficient consideration to this problem. An unsupervised filtering method to remove the "noise-genes" firstly, and then the samples are clus-tered using Bayesian Finite Mixture Model, finally the characteristically expressed genes in each subtypes are identified based on the clustering results by means of relative entropy. This process was applied to two data sets, one from an oligonucleotide gene chip experiment for leukemia samples, and the other from a cDNA microarray experiment for lymphoma samples. The discoveries have very explicit biological meanings.
Keywords:Gene expression profiles  Clustering  Informative genes  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《生物物理学报》浏览原始摘要信息
点击此处可从《生物物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号