Abstract: | Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed. |