首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups
Authors:Fan Xing  Zhang Feng-Hua  Al-Safi Rasha I  Zeng Li-Fan  Shabaik Yumna  Debnath Bikash  Sanchez Tino W  Odde Srinivas  Neamati Nouri  Long Ya-Qiu
Institution:State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Abstract:HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well mechanistically different. Herein, we describe the design and discovery of novel IN inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75, which is essential for the HIV-1 integration as an IN cofactor. By merging the pharmacophores of salicylate and catechol, the 2,3-dihydroxybenzamide (5a) was identified as a new scaffold to inhibit the strand transfer reaction efficiently. Further structural modifications on the 2,3-dihydroxybenzamide scaffold revealed that the heteroaromatic functionality attached on the carboxamide portion and the piperidin-1-ylsulfonyl substituted at the phenyl ring are beneficial for the activity, resulting in a low micromolar IN inhibitor (5p, IC(50)=5 μM) with more than 40-fold selectivity for the strand transfer over the 3'-processing reaction. More significantly, this active scaffold remarkably inhibited the interaction between IN and LEDGF/p75 cofactor. The prototype example, N-(cyclohexylmethyl)-2,3-dihydroxy-5-(piperidin-1-ylsulfonyl) benzamide (5u) inhibited the IN-LEDGF/p75 interaction with an IC(50) value of 8 μM. Using molecular modeling, the mechanism of action was hypothesized to involve the chelation of the divalent metal ions inside the IN active site. Furthermore, the inhibitor of IN-LEDGF/p75 interaction was properly bound to the LEDGF/p75 binding site on IN. This work provides a new and efficient approach to evolve novel HIV-1 IN inhibitors from rational integration and optimization of previously reported inhibitors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号