首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial community composition regulates SOC decomposition response to forest conversion in a Chinese temperate forest
Authors:Lin Qi  Jian Yang
Affiliation:1.Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,Chinese Academy of Sciences,Shenyang,People’s Republic of China;2.Department of Forestry,University of Kentucky,Lexington,USA
Abstract:Forest conversion influences soil organic carbon (SOC) decomposition through cascading effects on forest structure, soil properties, and soil microbial communities. However, interactive effects of these drivers and the key pathways that mediate forest SOC decomposition remain relatively unexplored. In this study, we compared relative importance of variables describing forest structure, soil properties, and soil microbial community on affecting SOC decomposition response to the conversion of a broadleaved Korean pine mixed forest into three other forests in the Changbai Mountains of China. We quantified SOC decomposition rate of these four forest types by measuring incubation soil respiration (SR). We then employed univariate regressions to quantify effect size of individual factor on SOC decomposition rate. A structural equation model (SEM) was developed to analyze pathways, relative importance, and interactive effects of these factors on SR. Our results showed strong marginal effects of dissolved organic carbon (DOC) content, fungal Phospholipid fatty acids (PLFAs) to bacterial PLFAs ratio (F/B), broadleaved to conifer ratio (B/C), and total PLFAs content (TPC) on SR. Measured SOC decomposition rate was most closely related to F/B, which was in turn influenced primarily by soil C/N ratio and fraction of non-oxidized carbon (NOC%). Our study identified “Aboveground forest composition → SOC chemistry → Soil microbial composition → SOC decomposition” as the key pathway by which forest conversion affected SOC decomposition. This research work highlights the critical role of soil microbial community composition in altering SOC decomposition response to forest conversion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号