Affiliation: | aDepartment of Medical Biology, Comenius University Bratislava, Jessenius Faculty of Medicine, Malá hora 4, 03754 Martin, Slovak Republic bClinic of Occupational Medicine and Toxicology, Comenius University Bratislava, Jessenius Faculty of Medicine, 03659 Martin, Slovak Republic cNational Institute of Public Health, 10042 Prague10, Czech Republic dInstitute of Experimental Medicine, Academy of Science of Czech Republic, 14220 Prague 4, Czech Republic e3rd Medical Faculty, Charles University, 10042 Prague 10, Czech Republic fRegional Hygienic Station, Povazska Bystrica, Slovak Republic gCentral Military Hospital, 034 26 Ruzomberok, Slovak Republic hGerman Cancer Research Center (DKFZ), Im Neuenheimerfeld 580, D-69120 Heidelberg, Germany iCenter for Family and Community Medicine, Karolinska Institute, Huddinge, Sweden |
Abstract: | ![]() We evaluated chromosomal aberrations in lymphocytes of 177 workers exposed to xenobiotics in a tire plant and in 172 controls, in relation to their genetic background. Nine polymorphisms in genes encoding biotransformation enzymes and nine polymorphisms in genes involved in main DNA repair pathways were investigated for possible modulation of chromosomal damage. Chromosomal aberration frequencies were the highest among exposed smokers and the lowest in non-smoking unexposed individuals (2.5 ± 1.8% vs. 1.7 ± 1.2%, respectively). The differences between groups (ANOVA) were borderline significant (F = 2.6, P = 0.055). Chromosomal aberrations were higher in subjects with GSTT1-null (2.4 ± 1.7%) than in those with GSTT1-plus genotype (1.8 ± 1.4%; F = 7.2, P = 0.008). Considering individual groups, this association was significant in smoking exposed workers (F = 4.4, P = 0.040). Individuals with low activity EPHX1 genotype exhibited significantly higher chromosomal aberrations (2.3 ± 1.6%) in comparison with those bearing medium (1.7 ± 1.2%) and high activity genotype (1.5 ± 1.2%; F = 4.7, P = 0.010). Both chromatid- and chromosome-type aberration frequencies were mainly affected by exposure and smoking status. Binary logistic regression analysis revealed that frequencies of chromatid-type aberrations were modulated by NBS1 Glu185Gln (OR 4.26, 95%CI 1.38–13.14, P = 0.012), and to a moderate extent, by XPD Lys751Gln (OR 0.16, 95%CI 0.02–1.25, P = 0.081) polymorphisms. Chromosome-type aberrations were lowest in individuals bearing the EPHX1 genotype conferring the high activity (OR 0.38, 95%CI 0.15–0.98, P = 0.045). Present results show that exposed individuals in the tire production, who smoke, exhibit higher chromosomal aberrations frequencies, and the extent of chromosomal damage may additionally be modified by relevant polymorphisms. |