首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of HIV protease activity by heterodimer formation
Authors:L M Babé  S Pichuantes  C S Craik
Affiliation:Department of Pharmaceutical Chemistry, University of California, San Francisco 94143.
Abstract:The dimeric nature of the HIV protease has been exploited to devise a novel mode of inhibiting the enzyme. The use of defective monomers or nonidentical subunits to exchange with wild-type homodimers produces catalytically defective heterodimers. Incubation of the HIV1 or HIV2 protease with a 4-fold molar excess of an inactive mutant of HIV1 leads to 80 and 95% inhibition of enzyme activity, respectively. Incubating HIV1 and HIV2 proteases at a 1:5 ratio results in a 50% reduction of activity of the mixed enzymes. The HIV1/HIV2 heterodimer was identified by ion-exchange HPLC. The heterodimer may display a disordered dimer interface, thereby affecting the catalytic potential of the enzyme. This mechanism of inactivation is an example of a dominant negative mutation that can obliterate the activity of a naturally occurring multisubunit enzyme. Furthermore, it provides an alternative to active-site-directed inhibitors for the development of antiviral agents that target the dimeric interface of the HIV protease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号