首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The discovery of a 3-phosphomonoesterase that hydrolyzes phosphatidylinositol 3-phosphate in NIH 3T3 cells
Authors:D L Lips  P W Majerus
Institution:Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.
Abstract:Phosphatidylinositol 3-phosphate (PtdIns(3)P), a recently described phospholipid, has been linked to polyoma virus-induced cellular transformation and platelet-derived growth factor-mediated mitogenesis. PtdIns(3)P, in contrast to phosphatidylinositol, phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), is resistant to hydrolysis by bovine brain phospholipase C gamma. We present here the identification of a phosphomonoesterase activity from the soluble fraction of NIH 3T3 cells which removes the phosphate from the D-3 position of PtdIns(3)P. This enzyme is specific as it has little or no activity on the monoester phosphates of PtdIns(4)P, PtdIns(4,5)P2, or inositol 1,3-bisphosphate and is tentatively designated phosphatidylinositol 3-phosphatase (PtdIns 3-phosphatase). The enzyme does not require added metal ions for activity and is maximally active in the presence of EDTA. It is inhibited by Ca2+, Mg2+, Zn2+, and the phosphatase inhibitor VO4(3-). In addition, there is no phospholipase C activity toward PtdIns(3)P in the soluble fraction of NIH 3T3 cells. In view of the absence of a phospholipase C activity that hydrolyzes PtdIns(3)P, we propose that PtdIns(3)P is not a precursor for a soluble inositol phosphate messenger but that it instead may act directly to control certain cellular processes or as a precursor for other phosphatidylinositols. PtdIns 3-phosphatase may thus terminate a metabolic signal or regulate precursor levels for other phosphatidylinositols that are phosphorylated in the D-3 position.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号