首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The interaction between Z-DNA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases.
Authors:Y G Kim  K Lowenhaupt  T Schwartz  A Rich
Institution:Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:Zab is a structurally defined protein domain that binds specifically to DNA in the Z conformation. It consists of amino acids 133-368 from the N terminus of human double-stranded RNA adenosine deaminase, which is implicated in RNA editing. Zab contains two motifs with related sequence, Zalpha and Zbeta. Zalpha alone is capable of binding Z-DNA with high affinity, whereas Zbeta alone has little DNA binding activity. Instead, Zbeta modulates Zalpha binding, resulting in increased sequence specificity for alternating (dCdG)n as compared with (dCdA/dTdG)n. This relative specificity has previously been demonstrated with short oligonucleotides. Here we demonstrate that Zab can also bind tightly to (dCdG)n stabilized in the Z form in supercoiled plasmids. Binding was assayed by monitoring cleavage of the plasmids using fusion nucleases, in which Z-DNA-binding peptides from the N terminus of double-stranded RNA adenosine deaminase are linked to the nuclease domain of FokI. A fusion nuclease containing Zalpha shows less sequence specificity, as well as less conformation specificity, than one containing Zab. Further, a construct in which Zbeta has been replaced in Zab with Zalpha, cleaves Z-DNA regions in supercoiled plasmids more efficiently than the wild type but with little sequence specificity. We conclude that in the Zab domain, both Zalpha and Zbeta contact DNA. Zalpha contributes contacts that produce conformation specificity but not sequence specificity. In contrast, Zbeta contributes weakly to binding affinity but discriminates between sequences of Z-DNAs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号