Daily hypoxia increases basal monocyte HSP72 expression in healthy human subjects |
| |
Authors: | Lee Taylor Adrian W. Midgley Bryna Chrismas Angela R. Hilman Leigh A. Madden Rebecca V. Vince Lars R. McNaughton |
| |
Affiliation: | (1) Department of Sport, Health and Exercise Science, University of Hull, Hull, HU6 7RX, UK;(2) Postgraduate Medical Institute, University of Hull, Hull, UK; |
| |
Abstract: | Heat shock protein 72 (HSP72) performs vital roles within the body at rest and during periods of stress. In vitro, research demonstrates HSP72 induction in response to hypoxia. Recently, in vivo, an acute hypoxic exposure (75 min at 2,980 m) was sufficient to induce significant increases in monocyte expressed HSP72 (mHSP72) and a marker of oxidative stress in healthy human subjects. The purpose of the current study was to identify the impact of 10 consecutive days of hypoxic exposures (75 min at 2,980 m) on mHSP72 and erythropoietin (EPO) expression, markers of oxidative stress, and maximal oxygen consumption in graded incremental aerobic exercise. Eight male subjects were exposed to daily normobaric hypoxic exposures for 75 min at 2,980 m for 10 consecutive days, commencing and ceasing at 0930 and 1045, respectively. This stressor was sufficient to induce significant increases in mHSP72, which was significantly elevated from day 2 of the hypoxic exposures until 48 h post-final exposure. Notably, this increase had an initial rapid (30% day on day compared to baseline) and final slow phase (16% day on day compared to baseline) of expression. The authors postulate that 7-day hypoxic exposure in this manner would be sufficient to induce near maximum hypoxia-mediated basal mHSP72 expression. Elevated levels of mHSP72 are associated with acquired thermotolerance and provide cross tolerance to non-related stressors in vivo, the protocol used here may provide a useful tool for elevating mHSP72 in vivo. Aside from these major findings, significant transient daily elevations were seen in a marker of oxidative stress, alongside sustained increases in EPO expression. However, no physiologically significant changes were seen in maximal oxygen consumption or time to exhaustion. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|