首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea
Authors:Leonard Katz  David P Brown and Stefano Donadio
Institution:(1) Corporate Molecular Biology, Abbott Laboratories, 60064 Abbott Park, IL, USA
Abstract:Summary pSE211 fromSaccharopolyspora erythraea integrates site-specifically into the chromosome through conservative recombination betweenattP andattB, the plasmid and chromosomal attachment sites. Integration depends on the presence ofint, an open reading frame (ORF) that lies adjacent toattP and encodes the putative integrase. Immediately upstream ofint liesxis (formerly calledorf2) which encodes a basic protein that is thought to exhibit DNA binding.xis andint were cloned in various combinations in pUC18 and expressed constitutively inEscherichia coli from thelac promoter.attP andattB were cloned inStreptomyces orE. coli plasmids containing kanamycin resistance (KmR) or chloramphenicol resistance (CmR) markers. Stable KmR CmR cointegrates formed byattP ×attB orattP ×attP recombination (integration) were obtained inE. coli hosts that expressedint. Co-integrates were not found in hosts expressingint+xis. Excision (intraplasmidatt site recombination) was examined by constructing plasmids carryingattL andattR or twoattP sites separating CmR from KmR and by following segregation of the markers in various hosts. BothattL ×attR andattP ×attP excision depended on bothxis andint inE. coli. pSE211att site integration and excision were not affected by a deletion inhimA, the gene encoding a subunit of integration host factor.
Keywords:Excision  Integrase  Integration            Streptomyces
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号