首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium
Authors:Pochon Xavier  Montoya-Burgos Juan I  Stadelmann Benoit  Pawlowski Jan
Institution:Department of Zoology and Animal Biology, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland.
Abstract:Symbiotic dinoflagellates belonging to the genus Symbiodinium are found in association with a wide variety of shallow-water invertebrates and protists dwelling in tropical and subtropical coral-reef ecosystems. Molecular phylogeny of Symbiodinium, initially inferred using nuclear ribosomal genes, was recently confirmed by studies of chloroplastic and mitochondrial genes, but with limited taxon sampling and low resolution. Here, we present the first complete view of Symbiodinium phylogeny based on concatenated partial sequences of chloroplast 23S-rDNA (cp23S) and nuclear 28S-rDNA (nr28S) genes, including all known Symbiodinium lineages. Our data produced a well resolved phylogenetic tree and provide a strong statistical support for the eight distinctive clades (A-H) that form the major taxa of Symbiodinium. The relative-rate tests did not show particularly high differences between lineages and both analysed markers. However, maximum likelihood ratio tests rejected a global molecular clock. Therefore, we applied a relaxed molecular clock method to infer the divergence times of all extant lineages of Symbiodinium, calibrating its phylogenetic tree with the fossil record of soritid foraminifera. Our analysis suggests that Symbiodinium originated in early Eocene, and that the majority of extant lineages diversified since mid-Miocene, about 15 million years ago.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号